Broadband Networks, Integrated Management & Standardization

Nobuo FUJII

ITU-T SG4 Vice Chairman

NTT Network Innovation Laboratories

nobuo@exa.onlab.ntt.co.jp
Broadband Networks and Services
- Network Technologies -

- Home Network
- Access network
- Transport network
- Server network
- IP network

<table>
<thead>
<tr>
<th>Residential Gateway Centric</th>
<th>Ether network base</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Mbps-100Mbps Access</td>
<td>BPON, DSL base</td>
</tr>
<tr>
<td>10Gbps Link, IP routers</td>
<td>GMPLS enabled OTN</td>
</tr>
<tr>
<td>Cluster Network,</td>
<td></td>
</tr>
<tr>
<td>GbFC, iSCSI, 10G standard</td>
<td></td>
</tr>
<tr>
<td>IP routing</td>
<td></td>
</tr>
<tr>
<td>Multicast, Diffserve, etc.</td>
<td></td>
</tr>
</tbody>
</table>
Broadband Services

• Contents Delivery Applications
 – Archived Contents (Point-to-point)
 – Streaming Contents (Multicast)

• Uni-directional to Bi-directional
Broadband Network Architecture

Home network

ISP networks

ASP networks

Network Operator networks

Server Network

Streaming, Archiving, Cashing
Distributed Processing engine

IP Network

Various CoS support, IP multi-cast
Low latency, Bandwidth Guarantee

Transport Network

Bandwidth allocation, Secure transport
Reliable transport. Cut through, etc.

Contents Delivery, User Data Cash
Portal Gateway, Multimedia com.
End-to-end Management of Transport Network - connection control procedure-

• Connection establishment component in ASON
End-to-end Management of Transport Network - routing aspect -

• Source and Step-By-Step Routing for ASON provides an end-to-end connections of the transport network. (alternative: Hierarchical routing)
Case study: CDN service management

- Scenario: User receives a stream contents from CDN network

1. Service request
2. User authentication
3. Service grant (Set up information)
4. Set-up request (Set up information)
5. Multi-cast configuration
6. Bandwidth request/allocation
7. Contents delivery
8. Performance report
Management of the broadband networks

• Goal: End-to-end management of sub-networks:
 – Service management rather than network management.

• Requirements for sub-networks:
 – Rapid service provisioning;
 – Autonomous service restoration;
 – QoS sensible application acceptance.

• Management areas of importance:
 – Configuration: service provisioning, autonomous systems configuration,
 – Performance: QoS report.
Design method for the broadband network management

• Conditions
 – Diversified(& ing) Management Protocols
 • SNMP, CORBA, CMIS/P, XML…
 – Diversified(& ing) SDOs
 • cf.SDO(Standard Development Organization)

• Approach
 – Protocol Independent Interface Design
 • Use of UML method
 – Electric document exchange between entities
Issues on the design method

• **UML**
 – What are the protocol independent common services, naming and addressing methods?
 – Conversion to SNMP, CORBA, GDMO models

• **Use of XML for document exchange**
 – What are Rules, Objectives and Guidelines of XML use?
 – Development of the GTDD
 • cf. Global Telecommunications Data Dictionary
tML Framework Scope

- Complete Trading Partner Spec.
 - Business Process Scenario
 - Trading Partner Profile/Agreement
 - Data & Vocabulary
- Business Rules
- tML Schemas
- Implementation Infrastructure Profile
 - Message Structure
 - Header & Encoding Rules
 - Payload
 - Reliable Connectivity

- tML Framework
 Rules, Objectives, Guidelines for Development of tML Schema

- tML Document
 Structured according to tML Schemas
 Developed according to tML Framework
Conclusions

• The broadband network as integration of sub-networks:

• Vertical integration of the broadband network management:

• Protocol independent management interface design:
 – Naming, Addressing, Common Service issues need to be solved.

• There are standardization efforts in ITU-T:
 – ASON (Automatically switched optical network) Rec.G.8080/Y.1304
 – tML (Telecommunications Markup Language) Rec.M.3030
 – TMN methodology amendment Rec.M.3020