Backhaul Virtualization for Multiple Services in Public WLANs

Kazuki Ginnan† Kazuhiko Kinoshita††
Keita Kawano‡ Hiroki Nakayama ‡‡
Tsunemasa Hayashi ‡‡ Takashi Watanabe†
†Osaka University, Japan ††Okayama University, Japan
‡‡Tokushima University, Japan
††††BOSCO Technologies Inc.
Sept. 29, 2017
Outline

1. Background
 • Heavy use of public wireless LAN
 • Expectation for bandwidth guaranteed service

2. Proposed Method
 • Guaranteed bandwidth model in Public WLANs
 • Backhaul virtualization and bandwidth assignment

3. Performance Evaluation

4. Summary and Future Works
Background

• Higher performance terminal equipment and multiple services are widely spread.
 → The amount of data traffic is growing rapidly.

• Public WLANs are often used.
Target

• Effective throughput degrades significantly when many users connect to single access point (AP).

Bandwidth guaranteed services are expected.

Propose guaranteed bandwidth model in Public WLANs

• GBR (Guaranteed Bit Rate) user
 • Require constant bandwidth
 → If bandwidth cannot be guaranteed, user’s requirement is rejected.

• BE (Best Effort) user
 • Share bandwidth with other BE users
Propose Guaranteed Bandwidth Model

• GBR users install dedicated application in their user equipment (UE).
 • Authentication of UE

• Traffic shaping
 • Role of GateWay (GW) and UE’s application
 • Transmit packets to backhaul without exceeding guaranteed bandwidth

• Set flow per UE in backhaul
 → Maintain shaped bandwidth per flow

![Diagram showing the process of traffic shaping and setting flows per UE.]

- Install dedicated application
- Setting a flow per UE
- Traffic shaping
- Backhaul
- Server
- AP
- UE
Network Model

• Virtual AP area
 • BE and GBR virtual APs are configured with multiple APs [1].
 • # of assigned physical APs are changed according to arrival ratio.

• A-GW (Access Point GateWay)
• AP NW (Access Point NetWork)
• B-GW (Backbone GateWay)
• SDN Controller
• AP Controller

AP Virtualization

- Configure BE and GBR virtual APs[1]
 - Each virtual AP is configured with multiple physical APs.
 - Each physical AP has ESSID of GBR or BE.
 - AP Controller selects a physical AP a user should be connected to.
 - A physical AP cannot be assigned to both virtual APs simultaneously.
 - It enables an AP to provide constant bandwidth to GBR users.

Red: Physical APs assigned to GBR virtual AP Black: Physical APs assigned to BE virtual AP

Users can see only virtual APs.
Backhaul Virtualization

• Mixed traffic of GBR and BE in backhaul
 \[\rightarrow\text{GBR} \, \& \, \text{BE}\] traffic should be isolated to achieve guaranteed bandwidth for GBR users.

• Network virtualization
 • BE \, \& \, GBR virtual networks (slices) are configured in the physical network
Bandwidth Assignment to Each Service

• Wireless
 • Assign physical AP for each service [1]

• Backhaul
 • Between A-GW and UEs:
 • GBR: assign bandwidth per UE
 • BE: assign bandwidth per physical AP
 • Between B-GW and A-GWs:
 • Hard to set flow per UE
 • Set aggregated flow per A-GW
 → Assign rich bandwidth
Issue of Backhaul Bandwidth Assignment

• BE bandwidth **diminishes remarkably** when excess bandwidth is assigned to GBR.

• Assignment should be changed **dynamically**.

Achieve target call-blocking probability of GBR users and improve satisfaction degree of BE users

• Bandwidth assignment in wireless links
• Bandwidth assignment between B-GW and A-GW
Bandwidth Assignment in Wireless Links

- Change physical APs assigned to each virtual AP at a constant time interval[1]
 - First, assign physical APs to GBR virtual AP
 - Set bandwidth for arriving GBR users per physical AP (ensured bandwidth)

Red: Physical APs assigned to GBR virtual AP Black: Physical APs assigned to BE virtual AP

After a certain period of time

increase # of GBR users
Bandwidth Assignment between B-GW and A-GW

• Change assignment between B-GW and A-GWs at a constant time interval T
 • GBR bandwidth = ongoing GBR users’ bandwidth
 + $Increased$-$predicted$ $bandwidth$

• Predict $Increased$-$predicted$ $bandwidth$ based on past GBR bandwidth variation

![Diagram of bandwidth assignment between B-GW and A-GW]
Increased-predicted Bandwidth prediction

• Predict based on average of the largest past bandwidth increase
 • Average increase variation of each time interval
 • Weight averaging intervals according to # of GBR users

Increased predicted bandwidth:

\[B_{\text{pre}} = \frac{\sum_{i=k-1}^{k-n-1} \alpha_i (B_{\text{max}_i} - B_i)}{\sum_{i=k-1}^{k-n-1} \alpha_i} \]

Weight parameter:

\[\alpha_i = \frac{u_k}{u_k + |u_k - u_i|} = \begin{cases}
\frac{u_k}{2u_k-u_i} (u_i \leq u_k) \\
\frac{u_k}{u_i} (u_i > u_k)
\end{cases} \]

\(t_k \): current assignment time
\(u_i \): # of GBR users at \(t_i \)
\(T \): Bandwidth assignment interval
\(B_{\text{max}_i} \): maximum GBR bandwidth at \([t_{i-1}, t_i] \)
\(B_i \): GBR bandwidth at \(t_i \)
Evaluation Model

• Users
 • Whole arrival rate : 0.04 (Poisson arrival process)
 • GBR users required 2.0 [Mbps] with mean 3.5 [min].
 • BE users require 52.5 [MB] file download.
 • Arrival ratio of BE and GBR users : \(r : (1 - r) \)

• Compared methods
 • F-BH: divides bandwidth of B-GW equally to each service
 • RF-BH: assigns bandwidth of B-GW to GBR and BE services according to arrival ratio
 (arrival ratio is assumed to be given)

※ Physical AP assignment is same as the proposed method.
• The proposed method *always* achieved target call-blocking probability and obtained higher satisfaction degree.

→ The proposed method achieved **flexible** assignment according to arrival ratio.

\[T: \text{Bandwidth assignment interval between B-GW and A-GW} \quad r: \text{Arrival ratio of BE user} \]
Evaluation with Varying T

- Call-blocking probability of GBR users

- Average satisfaction degree of BE users

- The proposed method outperforms F-BH and RF-BH when $T \leq 100$.

- # of A-GWs that can be supported
 \[T \geq \frac{10}{1000} \times m \quad (m:\# \text{ of A-GW})\]
 Setting a flow takes 10[ms]

 10000 A-GWs can be connected to the proposed model.

T: Bandwidth assignment interval between B-GW and A-GW
r: Arrival ratio of BE user
Summary and Future Works

• Summary
 • Propose network model for bandwidth guarantee in Public WLANs
 • Backhaul Virtualization in proposed model
 • Bandwidth assignment for GBR and BE
 • Performance evaluation by simulation
 • Call blocking probability for GBR users
 • Average satisfaction degree of BE users

• Future works
 • Enhance method to consider mobility of users and ARF (Auto Rate Fallback)