
Abstract
Enterprises can no longer afford to make a customer keep waiting for 6 months or 1 year for a release.

Thus, we adopt the DevOps workflow to deliver our product quickly. A DevOps workflow can bridge the gap
between develops and operators. It can also reduce develop time, create a robust product. However, as a large
telecommunication company, lots of POC environment need to be deployed among with the business growth for
telecommunication company, and process of deployment become complicate as well. Each environment might
meet different requirement. For example, some of the environments need to deploy SDN functions, but others do
not. Hence, we purposed a STEAM system, which is software lifecycle management. It records finished
requirements, fixed bugs and every microservice’s subversion in each release version. When we need to upgrade
the system, it’s very clear what version we need to upgrade.

Keywords-component; DevOps, microservice, version control system, Rolling Update

1

415 APNOMS 2017

I.Introduction
Recently, DevOps workflow has become popular in software develop and production release lifecycle. This

term is the combination of "software DEVelopment" and "information technology OPerationS". Due to its
characteristic which can adapt to market needs, deliver product quickly, and bridge the gap from developer to the
operator. More and more companies try to embrace and adopt DevOps. In past five years, the DevOps workflow
had been more and more popular compared with CMMI and waterfall model.

2

416

DevOps is a set of workflow towards software delivery where the key focus is on the speed of delivery, the
stability of any environment deployment. Enterprises can no longer afford to make a customer keep waiting for
the new feature for the half year. When the enterprises receive the feedback from the customer or in order to catch
up the newest trend in the market, enterprises need to upgrade their online system. Under the precondition that our
customers’ service can not be affected, we have to roll update our system without offline. As time goes by, our
system’s version will increase rapidly.

3

417

Although DevOps had been mature, it lacks central version management. Furthermore, too many DevOps
tools and methodologies resulted in confusing when enterprise adopt DevOps workflow.

4

418

Therefore, we need a robust DevOps workflow, version control methodology to fulfill smart rolling update.
We purposed Smart Tag Engine Application Manager(STEAM) to help us roll update production system. We also
show our tools and methodologies in DevOps workflow.

Chapter 2 talks about some DevOps tools that can make companies embrace DevOps workflow more easily.
Chapter 3 shows the workflow that Chunghwa Telecom is using. Chapter 4 reveals some problems when adopting
traditional DevOps and describe how STEAM solved it. Chapter 5 is the conclusion.

5

419

II. Related Work
Is there has 100% assurance that DevOps will improve products’ quality, decrease product’s delivery time?

This paper [1] point out that implementation of DevOps would positively impact to quality of the software and
responsiveness to business needs. It's no doubt that DevOps can improve collaboration between development and
operations.

IBM purposed a delivery pipeline with various DevOps approaches playing it in 2015[2]. In this paper, IBM
divided DevOps into five parts. Such as “Continuous Planning”, “Continuous Integration”, “Continuous
Deployment” “Continuous testing” and “Continuous Monitoring” shown as figure2. This pipeline can be applied
to enterprise level complex product development.

In order to achieve successful of DevOps workflow, you can't make bricks without straw. We explore
specialized tool to support that facilitates DevOps through automation and then introduce powerful DevOps tools
that used in our DevOps workflow.
A. Continuous Integration tools
(1)Gitlab

A source code management system, which is a friendly web-based Git repository manager. Develops can
push and pull source code from gitlab, and can easily take a glance at what they fixed.
(2)Jenkins

Jenkins focus in two major jobs: continuous building/testing software project.
(3)Redmine

Redmine is an issue tracking system. It can track not only requirement but bug issue.

B.Continuous Deployment tools
(1)Microservice

Microservice is the difference between monolith application. Monolith application built as a single unit, it
might be a problem when scaling out. Microservice is much more lightweight than Monolith application. Due to
its scalability and stateless feature, can scaling out just one microservice instance, not the whole application.
(2)Containr Technology (Docker)

Container technology is widely used in DevOps workflow. Due to its scalability, portability and usability. To
deploy service to production or develop environment become easier. Container-based architectures enable
continuous delivery and deployment.
(3)Ansible

6

420

Ansible is an open-source automation engine that automates software provisioning, configuration
management, and application deployment. Ansible deploys modules to node over SSH. Through ansible, we can
write deploy script at once and then run every node in our environment.

6

421

III. Chunghwa Telecom DevOps Workflow

This chapter describes Chunghwa Telecom Cloud Laboratory DevOps Workflow Approach and our
Smart Tag Engine Application Manager(STEAM).

7

422

Figure 4. shows the step by step transit flow. At the beginning, develops communicate with each other.
The requirement contains not only customer’s feedback but also the market trend. Once develops finished the
discussion, will produce requirement lists and then start to develop. We use git as basic codebase repository,
develops can checkout repo, commit code, and then push to the repository. In order to make the code change
clearly, we adopt Gitlab into our workflow. When develop committing code into Git repository, it will trigger
Jenkins to build. After building the code, Jenkins will show this build is a success or not. If this build is failed,
develops have to find out the problem and fix it. If this build is a success, Jenkins will create this microservices
docker container, and then send this container to docker registry as well as send this container’s version to our
production version control system called STEAM. Now, new features are finished and bugs are fixed. It time to
deploy to develop environment. After deploying, tester can start to test the system. Not only new features but bugs
be tested. Once pass the test, list of new features and bugs will be recorded into STEAM.

423

IV. Smart Tag Engine Application Manager (STEAM)
This chapter discusses how to choose the proper version and release into the market. We purposed Smart

Tag Engine Application Manager, called STEAM. STEAM records release tag, which is the candidate version for
deploying to the production environment.

STEAM has four advantages, which is it can provide real-time release version searching, make roll update
system easily, manage system friendly, and make loopholes searchable.

9

424

STEAM use swagger framework as the user interface. It also supports standard REST protocol to make
service-side call friendly. The figure shows the swagger UI.

10

425

STEAM backend provides standard REST API calling. It stores data including microservices’ version, fixed
bugs list, common lib’s version and finished requirements list. The stored structure uses Tree structure. It makes
search easily.

11

426

Each release tag contains five information. (1) Finished Requirement (2) Fixed Bugs (3) Microservice’s
version (4) Common Libs (5)3rd Party Libs

First, release version records each microservice’s version, shows at figure5. In this figure, you can see there
are 4 microservice recorded in release tag “2.0.1”. Each microservice has its own version. Beside, microservice’s
version adopts semantic versioning. Semantic versioning is purposed to solve “not clear” versioning. Our semantic
versioning format as following:

microservice tag : major tag + minor tag + branch name + tag Date + Jenkins Number

Thus, release version also records every requirement and bug. We use Redmine to manage project and
product requirement and bugs of the system. In the STEAM system, we implemented a redmine hook, which
hooking between redmine and STEAM. Once developer or project manager modifies the requirement or bug ticket
on redmin, STEAM also received this change and adjust status immediately. Hence, this release version can know
which requirement or bug has been finished.

We also include common libs and 3rd party libs to record libraries we used in our system.

12

427

STEAM take apart in DevOps’s deploy strategy. When committing code from develops, Jenkins auto
generates the unique tag for each microservice. Jenkins store this tags into STEAM system. Our deploy strategy
has three parts. First part; regular deploy. In order to integrate and test code, regular deploy starts at every Monday
and Thursday. This environment is deployed by latest build version from STEAM. Second, alpha test deploy. This
stage is for a tester. The environment is deployed by alpha version Finally, Production delivery, deploy a system
to a production environment, which using release tag version from STEAM.

13

428

With the STEAM system, we can clearly identify which requirement and bugs has been fixed in this release
tag. After choosing the proper release tag, we know every microservice’s version indeed. Hence, we can upgrade
our system smart and smoothly.

14

429

STEAM also can help searching the security issue when 3rd party/organization announce high severity
loopholes.

15

430

V. Conclusions and Future Works
In this paper, we purposed Smart Tag Engine Application Manager(STEAM), a system that combines

enterprise workflow of DevOps. DevOps workflow can bridge the gap between develops and operators. However,
control the system’s release version become a huge problem when adopting traditional DevOps workflow.
STEAM system can help to solve this problem. This system can record each release version’s full information,
which include finished requirement, fixed bug and microservices’version. With those information, operator can
clearly choose correct version and deploy into production environment. Even the production environment need
rolling update the system, the operator can handle the situation.

Reference
[1] Evaluating the impact of DevOps Practice in Sri Lankan Software Development
Organizations.
[2] Understanding DevOps & bridging the gap from continuous integration to
continuous delivery

16

431

