KDDI Research

Design and Implementation of
Automatic System for Network Testing
with Quality Degradation
Sep. 27-29, 2017, Seoul, Korea
Junichi Kawasaki,

Megumi Shibuya, Atsuo Tachibana, Masanori Miyazawa and Teruyuki Hasegawa
KDDI Research, Inc.

Abstract

One of the key issues for telecom operators is how to efficiently achieve
network testing in order to localize problems (e.g., software bugs) before
deployment because both the number of testing scenarios which operators have to
cover for improvement of service quality and the number of network equipment
items have been increasing due to emerging advanced network technology such
as policy-based path control in responding to network conditions (e.g., packet
loss, delay and jitter), SDN and NFV. Hence, the increase in number of test
scenarios is accelerating, and in future, such a test scenario explosion could lead a
fatal limitation of the current manual-based approach, thereby making automatic
network testing more valuable. To tackle this issue, we investigated an automatic
system for network testing, and proposed a verification mechanism with quality
degradation such as packet loss, delay and jitter supported by Open Source
Software. We evaluated the proposed system using an experimental network of
IP-Sec Gateway and the demonstration results show that the workload was
successfully reduced by half, compared to that of the conventional approach.

459

APNOMS 2017

I 1. Introduction Moo

-To maintain SLA between customers and carriers
-When devices are added, removed, upgraded
of test items

Network

Testing

X

-Virtualized: More components to be tested
SDN/NFV | _piversified services: More patterns to be tested
-Agile implementation: Shorter time for testing

Legacy =>4 < ! @ S-in
SDN/NFV a5) S Testitoms
N '
W

.
—ay

=

Manual-based approach
D - cannot cover all items
V - human error risk

1. Introduction

Telecommunication carriers need to provide a certain level of services in their
commercial networks in order to maintain service level agreements (SLAs) with
customers. To maintain reliable and stable network services, it is important to test the
networks when new equipment is introduced and when existing devices are upgraded
(e.g., next-up software version) or removed. The procedure for network testing basically
consists of three steps; preparation of the testing environment, execution of the test, and
analysis of the test results. The number of test items frequently exceeds several hundred;
therefore, it is always a burden on the network testing team.

Furthermore, the number of components and the number of patterns to be tested will
be much larger with the emergence of new advanced technology providing policy-based
path control and software-based networking such as software-defined network (SDN) and
network function virtualization (NFV), though the available time for testing will be
shorter to cycle agile implementation of the services. Therefore, we will see a fatal
limitation of the current manual-based approach: it could not cover verification of all test
items and could cause human error.

460

I 2. Related work and proposal e

mPolicy-based path control

-Becoming widely used

(e.g., hybrid WAN)
-Monitor and switch paths &~

in responding to network

conditions -

Testing with various ; -
quality patterns is needed

mTesting automation

e CloudShell/TestShell Automatic System
-Protocol testing for Network
-Protocol: BGP/OSPF Testing with
Does not support testing QLIEi' Ity

in degradation cases Dearadation

2. Related work and proposal

As one of the advanced network technologies, policy-based path control in responding
to network quality is becoming widely used (e.g., hybrid WAN [1][2]). These types of
devices have some parameters for switchover, and monitor the actual network conditions
(e.g., packet loss, latency and jitter) and switch paths based on pre-defined thresholds. As
verifying these networks requires repeated testing taking into account various quality
patterns, it will be more time-consuming.

It is challenging to effectively verify the network under such advanced environments.
In order to tackle that situation, we proposed a support system for network testing [3]. In
our previous research, we implemented automation of failure testing to observe network
behavior when a link failure occurs; however, that system does not support testing in
degradation cases. Even though testing automation products (e.g., CloudShell/TestShell
[4]) are becoming commonly used for network testing, they have not been applied to
testing with latency and packet loss.

In this paper, we propose and demonstrate an automatic system for network testing
which includes network quality degradation in order to support verification of policy-
based path control.

461

I 3. Automatic system for network testing Moo

iy) -Create/Start test scenarios
) m -Check results
- -

Testing Control Server Web application
0SS [DB (testing scenarios,
Chefserver |(Zabbix server L NtbTtopologies, recipes,
logs)
B
. Functions
. -Automatic construction of NtbT | Automatic testing
. -Automatic failure occurrence with degradation
. -Monitoring network status
NtbT Server, s ;
s T, oo KM
‘ VSW ‘ ‘ VSW ‘ VSW ‘ ----------------- Nth
~— @ (NW to be tested)
@, ¢u: Virtual Bridge _—_l;_
< : Testing Control Plane ="
—— : Data Plane Physical-SW

3. Automatic system for network testing

The picture above shows our proposed automatic system for network testing; it
consists of a testing control server and a network to be tested (hereinafter “NtbT”) server.
The testing control server manages automatic testing with network quality degradation
and the test runs on the NtbT implemented on the NtbT server. Three functions are
provided by the control server to achieve the automation: automatic construction of
the Ntb'T to prepare for the test environment; automatic failure occurrence to
execute the failure testing command; and monitoring network status to collect the
network information for analysis. The control server and the NtbT server are
connected via the testing control plane and Open Source Software (OSS), Chef [5]
and Zabbix [6] server on the control server exchange messages between the
clients on the NtbT server through this control plane to support the
automation.

The proposed system provides a Web user interface (UI) for operators to
create and start a testing scenario and check the testing result on a Web
browser. The database (DB) in the control server stores the testing scenarios,
NtbT topologies and recipes that are necessary for creating scenarios
(explained in details in the next slide), and result logs.

The NtbT consists of virtual switches and hosts on KVM and physical
switches to establish the testing environment necessary for verification
regardless of physical and virtual. They are connected to the testing control
plane and the data plane by a virtual bridge. Thus, our proposed system can
be used on any test environment (physical, virtual, and coexistence network)
of carrier access network where policy-based control is implemented.

462

I 3.1 Testing scenario ¥o0i

Testing Scenario| Ng. Scenario Step
NtbT 1 | Selection of NtbT topology from DB
construction [2™TConstruction of NtbT
scenario — -
3 |Initialization of network equipment
4 | Checking of connectivity

Failure scenario Selection of recipes from DB with execution time
Traffic recipes - traffic sending/receivin :BPa;Z:ilgtr:w »
5 Failure recipes: interface down/up[node '
latency start/stop | Interface, etc

eProcedure:

I. Create a testing scenario with start time
II. Scenario runs automatically

III. Check the result

3.1 Testing scenario

This slide shows a testing scenario created by operators on a Web browser for
automatic testing. A testing scenario consists of an NtbT construction scenario and a
failure scenario.

The construction scenario has four scenario steps. One is selection of NtbT topology
which can be selected from DB and determines an NtbT topology. The second step is
construction of NtbT-creating virtual machines and bridges based on the selected
topology. Third is initialization of network equipment which configures the virtual
machines. And, the last one is checking of connectivity by executing a ping test.

The failure scenario consists of traffic recipes and failure recipes. Recipes can be
selected from the DB with execution time and other parameters such as IP version and
bandwidth for a traffic recipe and node and interface where a failure is caused for a
failure recipe. Examples of failure recipes are interface down/up and latency start/stop.

In using this system, the procedure is as follows. Firstly, operators create a testing
scenario with a start time. Secondly, the scenario is started automatically at the specified
time and runs until the failure scenario is completed. Finally, operators check the results
on a browser.

463

I 3.2 Automatic construction of NtbT Koo

Testing Control Serve

0SS
(Chef, Zabbix)
=

onstruction
Scenaro
JSON-
based Hostname
Config. || Control IF
Data IF
efc.

=>Configure
=>Check connectivit

NtbT Server _;'_','--'

“q Virtual switch
with Chef client

— : Data NW £\ 3 ﬁ
[=]: Chef server @ i\% // ‘*- installed

: Chef client = \"y

= : Control NW _%ﬁ\—-——-d

3.2 Automatic construction of NtbT

The Chef, an infrastructure environment construction tool, constructs the NtbT based
on the configuration files of the topology selected from the DB in a construction scenario.
The files are written in the JSON language and they define the configuration of each node,
including a hostname, a control interface connected to the testing control plane, and data
interfaces connected to the data plane. Each interface is defined with an IP address, a
virtual bridge, and other information such as routing.

As the first step of automatic construction, the Chef server on the testing control server
instructs the Chef client on the NtbT server to create virtual machines based on the
information of a hostname and a control interface in the configuration file. We use
Cumulus [7] as a network OS to build a virtual switch where a Chef client has been
installed for the next step.

Secondly, the Chef server instructs the Chef client on each node to configure the IP
address, routing. etc. that are also defined in the configuration file.

Once construction is completed, a ping test is performed on every link and between
every host pair. The instructions of the ping test are also sent from the Chef server to the
Chef client on each node.

464

I 3.3 Automatic failure occurrence Koo

Testing Control Serve

Fallure _ﬁ

. —
cenario DB
Failure

Recipe || Node

o IF

S .
A Degradation type

* % ~ Degradation values

“ 3

. & o -
NtbT Server el

= : Control NW
= : Data NW
[=]: Chef server

: Chef client [<&
" Failure || SW2 Failure || SW2 Failure || SW2
Fluctuating BEERSRIFEE Recipe2 || FE0/1 Recipe3 | | FEO/1
Quality Delay Delay Delay
3000ms 4000ms 1000ms

3.3 Automatic failure occurrence

The Chef server on the testing control server reads failure recipes in a failure scenario,
and executes the corresponding command in sequential order. The command is created
based on the failure recipe that defined the failure location, such as node and interface,
degradation type such as latency and packet loss, and degradation values. The created
command is sent from the Chef server to the Chef client on the NtbT server and executed
to cause the degradation. Eventually, it enables network testing with fluctuating quality
through a combination of several failure recipes having different parameters.

465

I 3.4 Monitoring network status oo

Testing Control Server vSW_vhost
zabbix_ snmpd
server

Traffic volume

Every 10 seconds e Y B B TTTPTET
Log
zabbix_
agentd
T
[DE
— vhost

Ipefsends/receives/ E' T

iperf

analyzes packets

every second

Zabbix;sender

uploads periodically Fm‘
End-to-End quality sender

(speed, jitter, loss)

3.4 Monitoring network status

This slide explains how the testing control server monitors each node in the NtbT
during network testing for verification. Zabbix, a network monitoring tool, periodically
collects network information such as traffic volume on each interface, logs of the devices
and the End-to-End communication quality of every host pair.

Every 10 seconds, the Zabbix server on the control server sends an inquiry for traffic
volume to snmpd and that for logs to zabbix_agentd, and each daemon replies
accordingly.

Iperf [8] and zabbix_sender on each host are used to collect the information of End-to-
End quality. Iperf sends, receives and analyzes packets between every host pair and
measures the End-to-End quality, such as speed, jitter and packet loss, every second.
Zabbix_sender periodically uploads the measured data to zabbix_server.

The collected data are stored in the DB on the control server, and operators are able to
easily confirm the test results via the browser.

466

I 4.1 Network topology for system evaluation &

Monitor & switching are
enabled on GW1-CE1 =
and GW3-CE1 w3 Path B

® Monitor and Switching

The path of a state

ety NORMAL better than another
X< delay<y DELAY becomes the working
y< delay DOWN path

% Threshold x, y is configured on GW.

4. System evaluation

4.1 Network topology

To evaluate the availability of our proposed system, we set up a network testbed
consisting of [P-Sec Gateway (GW) as a example of the target network, which has the
function of policy-based path control. Both GW1 and GW3 monitor each link between
GW and the Customer Edge router (CE) and they switch paths by comparing the
measured delay values against the thresholds in the configuration.

The state of the link is defined as either NORMAL, DELAY or DOWN with two
thresholds x and y configured on GW1 and GW3. When the measured delay is less than x,
the state is NORMAL. When the delay is x or longer and less than y, the state is DELAY.
When the delay is y or longer, the state is defined as DOWN. The path of a state which is
better than another is selected as the working path.

467

I 4.2 Network implementation

KDDI Research

® System environment

Testing Co
oss
[Chef, Zabbix)

e e
T

Ubuntu 14.04
" Wemory sic

28core 28core

DA Server12.4.0 Client 1251
P, AL 2.4.8(server) 2.2.2(agent)

B e,
= S e e e "
sampad/
; PI‘OX)' znhbn‘('_ugeﬂbd
% =~ Create proxy
s ‘or CE2
e st with 0SS
‘ = 1%, client installed
et i { Py ; OSS client
GW3 t be
— : Control NW [=]: Chefserver 121 7 provy nodes | (:j?n?oﬁ d
= : Data NW [-] : Chef client nstarie

on the testbed

4.2 Network implementation

The picture above shows the implementation of the experimental environment. The
table of system environment summarizes the specifications of servers for testing control
server and NtbT server.

Chef and Zabbix server are installed on the testing control server, and Chef client is
installed on the NtbT server. On the other hand, the appliance-based devices in NtbT such
as “CE2” cannot install OSS client, therefore Linux containers (LXC) with Chef and
Zabbix client installed are created and they work as a proxy node to receive a packet for
the appliance-based devices and take necessary actions. When the Chef server on the
testing control server sends an instruction to a device, the proxy node for that device
receives it and executes the corresponding command on the actual device via ssh
connection. When the Zabbix server on the control server sends an inquiry for a device,
the proxy node for that device receives and transfers it to the actual device via Network
Address Translation (NAT) to obtain network information such as traffic volume and log.
The reverse data is also transferred to the control server by the proxy.

468

I 4.3 Failure scenario for system evaluation oo

Expected Results

Riﬁ;’?e F'c[:l)i(iirgrﬁ;et__:ig(]es GWI-CE1 | GW3.CE1 Wg;':;‘”g
1 Cause 2 sec delay on the link between GW1-CE1 ORMAL |[NORMAL || A
2 Change the delay with 4 sec DELAY |NORMAL| B
3 Change the delay with 6 sec DOWN |NORMAL| B |
4 |Normalize the delay ‘» NORMAL |NORMAL| B ||
5 |Cause 2 sec delay on the link between GW3-CE1 NORMAL [NORMAL||| B |
6 |Change the delay with 4 sec NORMAL | DELAY Al
7 |Change the delay with 6 sec NORMAL| DOWN A
8 |Normalize the delay RMAL | NORM A

o8

4.3 Failure scenario
The failure scenario used for system evaluation is as follows.

1) Cause a 2 second delay on the link between GW1-CE1

2) Change the delay to 4 seconds

3) Change the delay to 6 seconds

4) Normalize the delay

5) Cause a 2 second delay on the link between GW3-CE1

6) Change the delay to 4 seconds

7) Change the delay to 6 seconds

8) Normalize the delay

Expected results are described in the table at right. When the caused delay is four
seconds, the state should be DELAY; in the case of six seconds, it should be DOWN. The
working path should change and the traffic should be rerouted when GW1 becomes
DELAY while GW3 is NORMAL and when GW3 becomes DELAY while GW1 is
NORMAL. In verification, the states of GW1-CE1 and GW3-CE1 are confirmed on the
GW log. The working path is confirmed by a traceroute command in the case of manual
operation or by visualized traffic on GUI in the case of system operation.

469

I 4.4 Evaluation results Koo

®Perform the scenario manually and, with the proposed
system, twice, respectively

Step Manual operation With system

1 Execute command Create scenario

2 | Check result Run scenario

3 - Repeat1-2 - Check result

®Results

Case Testing Operation .I?I_:g[ﬁﬁ] WorkAT-leori?s?min]
Case-1 | Manual operation 21:05 21:05 Reduced
Case-2| With system 27:51 1:12 E 46.9%

5

= Create 6:03 =°9Opgraror's
scenario ‘} work hours
Run

scenario

= Check
result

16:39

4.4 Evaluation results

We evaluated the proposed system using the failure scenario described in the previous
slide. We performed the scenario manually and with the proposed system, twice,
respectively, and measured the time taken to complete all steps and the operator’s work
hours. In the case of manual operation, the time includes that for executing commands
and checking results, and the work hours are the same since the operator needs to work
continuously. In the case of system operation, the time includes that for creating the
scenario, running the scenario, and checking results, and the work hours include the time
taken in creating the scenario and checking the scenario (excluding that for running the
scenario because it runs automatically).

In case-1, the average time and the average work hours were 21:05 minutes. On the
other hand, in case-2, the average time was 27:51 minutes, and the average work hours
were 11:12 minutes. The results showed that our proposed system reduced the testing
workload by 46.9% compared to a manual-based approach.

470

I 5. Conclusion

KDDI Research

mProposal

+ Automatic system for network testing with quality
degradation

mImplementation of automatic system
+ Construction of NtbT and failure occurrence by Chef
« Monitoring network status by Zabbix

mSystem evaluation
+ Testing on experimental network that consists of IP-Sec GWs
+ Reduce testing workload by half
* No human error risk

5. Conclusion

We proposed an automatic system for network testing with quality degradation. We implemented the
proposed system using OSS, Chef and Zabbix. Chef supports automatic construction of NtbT and failure
occurrence, and Zabbix supports periodic monitoring of network status periodically during testing. We
evaluated our proposed system using an experimental network consisting of IP-Sec GWs, and the
demonstration results showed that the proposed system reduced testing workload by half. In addition,
there was no human error risk in testing using the system, which is another advantage of our proposal.

References

[1] Silver Peak White Paper, “Dynamic Path Control: The Foundation for Your Hybrid WAN,”
https://www.silver-peak.com/sites/default/files/infoctr/silver-peak_wp_dpc.pdf.

[2] Broadband Forum TECHNICAL REPORT, “TR-348 Hybrid Access Broadband Network
Architecture,” https://www.broadband-forum.org/technical/download/TR-348.pdf.

[3] M. Shibuya, H. Kawakami, T. Hasegawa, and H. Yamaguchi, “Design and implementation of support
system for network testing with whitebox switches,” COLLA 2016, pp.39-44, Nov. 2016.

[4] QualiSystems CloudShell / TestShell, http://www.qualisystems.com/products/cloudshell-add-
ons/testshell-overview/

[5] Chef, https://www.chef.io/chef

[6] Zabbix, http://www.zabbix.com

[7] Cumulus, https://cumulusnetworks.com
[8] Iperf, https://iperf.fr

471

Mnn

KDDI Research

