
Abstract
For modern web, it is more and more important to have global websites, which

means development teams have to translate their websites to different languages so that
they can promote products or services to different cultures, regions, or countries.
However, website globalization is never easy, especially when we have already built a lot
of complicated web applications. To simplify the process, we have come up with an
automatic mechanism which integrates various implementations and procedures.

Keywords: internationalization, localization

1

432 APNOMS 2017



1. Introduction
In computing, internationalization (i18n) and localization (l10n) are means of

adapting computer software to different languages, regional differences and technical
requirements of a target market (locale) [1].

Generally, internationalization means abstracting all of the strings and other
locale-specific code (such as date or currency formats) out of applications, and
localization means giving abstracted parts translations and localized formats.

2

433



2. Challenges
If our web applications were all small projects, it is would be sufficient to

manage locales manually. However, these applications usually grew rapidly, and that
made us difficult to keep abstracted keys and translations consistent for all locales. By
and large, we confronted a couple of challenges while maintaining locale-related
resources without tools:

(1) Managing translations for multiple locales: Sometimes, developers needed
to adjust or revise translations to make phrases more readable or meaningful, but they
didn’t update those for the other locales at that moment, which made our translations
inconsistent. Moreover, the number or the sequence of these translations might be
diverged sometime. In either case, it’s really painful to make it right again.

(2) Sharing translations among different web applications: Developers might
develop and maintain more than one application at the same time, and there are definitely
numerous translations which can be reused. We could copy these locale translations from
one application and paste them to another, but it’s obviously not an efficient way. What’s
worse, the format of locales for different applications might not be the same, like JSON
format for one application and Properties format for another one.

3

434



3. Mechanism
To tackle the aforementioned problems, we have taken a few measures. First of

all, we created a plugin based on a linting tool called ESLint [2] to help developers find
out where the strings needed to be abstracted were. The ESLint plugin helped us do
internalization.

In the next place, we built a web tool, called Keys-Translations Manager (KTM),
to manage all of the translations in different locales for multiple applications, and allow
the translations to be shared among these applications. KTM helped us do localization.

Finally, we implemented Babel [3] and Webpack [4] plugins to facilitate our
workflow. Originally, Babel is a transpiler which assists us transpile the code; Webpack is
a module bundler which assists us bundle our assets. Based on these, we built our own
plugins to automatically export locales. These plugins helped us do automation and
reduced manual works.

4

435



3.1 Automation Flowchart
As the above figure shows, we applied ESLint to analyze our UI source code, and

the plugin we built based on ESLint would show us where the uninternationalized strings
were. After analyzing, we abstracted and translated these strings, and then stored them to
Keys-Translations Manager to decrease the complexity of managing a great deal of
translations.

Next, our continuous integration and continuous delivery (CI/CD) workflow
would take over the automation process. It triggered the build process with Webpack, and
used Babel to parse the entire code. At this time, the Babel plugin we built would reveal
the internationalized keys which exactly used in the application so that we would not put
outdated keys and translations to our locales. After that, the keys discovered by the Babel
plugin would be passed to Webpack, and then the Webpack plugin we built would take
these parameters to query necessary translations from KTM, and exported them to our
production environment eventually.

5

436



3.2 eslint-plugin-i18n
The first step of internationalization is that we have to abstract the strings in our

applications. We have developed many UI modules and the strings which needed to be
internationalized are scattered around these modules, and it is difficult to find out all of
them manually. However, we have overcome this obstacle by means of ESLint and its
plugin.

ESLint is a linting tool for JavaScript aiming to make code consistent and avoid
bugs. It is a static analysis tool, which means we can use it to analyze our JavaScript code
without executing it. Based on ESLint, we develop a plugin called eslint-plugin-i18n to
locate the code snippets which have not internationalized yet. In our case, which means
there are still some Chinese characters left in our application. As the screenshot shows,
eslint-plugin-i18n lists all of the strings which are not internationalized in every
JavaScript file.

This plugin supports not only Chinese characters digging, but also Japanese,
Korean, and Thai characters. We have made it an open source tool and have published it
as an NPM package [5], and thus those developers who have the same need do not have
to reinvent the wheel.

6

437



3.3 Keys-Translations Manager (KTM)
Keys-Translations Manager (KTM) is a locale management tool, which lets us

manage locales in one place so that we can control multiple locales in different
applications at the same time. With KTM, we can simply input, import, and export
translations, and we can add, edit and delete translations with effortless ease. KTM
supports different kinds of locale formats including nested JSON, flat JSON and
Properties. In addition, you can choose whether to minimize these files or not. Normally,
we minimize the files for production environment for better performance. KTM also
provides basic data validations to keep our data from being inconsistent, which makes it
painless to prevent duplicated keys and missing translations.

7

438



KTM is the second step to improve development processes and is released as an
open source project, which can be found at Github [6]. KTM is flexible and configurable,
and developers can initiate various locales and applications according to their needs
through different configurations without changing a line of the code.

8

439



3.4 KTM CLI
We already have a tool (eslint-plugin-i18n) to find out the code we missed to

internationalize and an application (KTM) to help us implement localization. However, it
is still annoying that we have to download these translations as locale files manually
every time when we need to deploy.

This is where keys-translations-manager-cli (KTM CLI) comes in. KTM CLI is a
command line tool written in Node.JS. With KTM CLI, we can export locales managed
by KTM without navigating to the web. It is useful as we adopt CI/CD workflow in our
development process. We have made KTM CLI an open source tool as well [7].

9

440



3.5 babel-plugin-ktm
KTM CLI is good, but not good enough. The keys in Keys-Translations Manager

grow as time goes by, and some of them might be outdated and would not be used
whether temporarily or permanently. If we export all of the keys to locales, we get some
unnecessary outdated keys, which might slow down the load time of our web page.
Therefore, we utilize Babel to solve this problem.

Similar to ESLint, Babel is another static analysis tool. Typically, people use it as
a transpiler. This means that we give Babel some code, and Babel modifies the code, and
then it gives us the new code. As the above figure shows, Babel takes three stages to
process the code:

(1) In parse stage, Babel turns JavaScript code into a computer friendly
representation called an Abstract Syntax Tree (AST).

(2) In transform stage, Babel traverses through the AST and allows us to
explore, analyze and modify it. Most importantly, this is where our plugin operates.

(3) In generate stage, Babel replaces the original code with the new
content generated based on the transformed AST.

Based on Babel, we have developed a plugin called babel-plugin-ktm to find out
the keys actually used throughout the application. This plugin traverses and analyzes the
AST in the transform stage after Babel parses the source code, and then collects the
internationalized keys according to the configurable string pattern which identifies i18n
functions. When three stages are all done, Babel would gather the keys analyzed and
extracted from every file, and generate the final result.

10

441



3.6 ktm-webpack-plugin
Webpack is a module bundler for modern JavaScript applications. Webpack

calculates module dependencies and uses loaders and plugins to process applications, and
then packages the complied modules into bundles.

One of the Webpack processes is to transform new syntax to the syntax browsers
support through Babel. In other words, Webpack executes babel-loader to process our
code before it adds the code to bundles. Hence, we can get the keys extracted via the
babel-plugin-ktm we have built, and create our own Webpack plugin － ktm-webpack-
plugin to map these keys to their translations managed by KTM, and then export them to
locales. Because of these plugins, we will not get redundant data anymore.

11

442



4. Conclusion and Future Work
To automate and accelerate our development process, we have designed and

implemented a number of tools, including KTM and its command line tool (KTM CLI),
an ESLint plugin (eslint-plugin-i18n), a Babel plugin (babel-plugin-ktm) and a Webpack
plugin (ktm-webpack-plugin). These tools not only help us to manage locales with ease,
but also let us decrease a lot of manual work and increase efficiency.

Although our development process has been improved, there is still some work
which can be done. Take big web apps for example, because it is not efficient to put all
code into a single file, we usually separate our code into various bundles to load them on
demand. However, the translations for a locale cannot be divided currently in most i18n
architecture for modern web applications, and have to be downloaded in the beginning
when users navigate to the web site. It might be an issue if the size of translations keeps
increasing continually, and this is what we want to solve to get better performance in the
future.

12

443



Reference
[1] Internationalization and localization. In WIKIPEDIA. Retrieved May 5, 2017, from 
https://en.wikipedia.org/wiki/Internationalization_and_localization
[2] ESLint. Retrieved May 5, 2017, from http://eslint.org/
[3] Babel. Retrieved May 5, 2017, from https://babeljs.io/
[4] webpack. Retrieved May 5, 2017, from https://webpack.js.org/
[5] eslint-plugin-i18n. Retrieved May 5, 2017, from 
https://www.npmjs.com/package/eslint-plugin-i18n
[6] Keys-Translations Manager (KTM). Retrieved May 5, 2017, from 
https://github.com/chejen/keys-translations-manager
[7] keys-translations-manager-cli (KTM CLI). Retrieved May 5, 2017, from 
https://github.com/chejen/keys-translations-manager/tree/master/packages/keys-
translations-manager-cli

13

444


