
Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 1

An Automatic Internationalization

and Localization Mechanism for

Web Applications

Che-Jen Chang,
(Wei-Chen Liao, Kai-Wei Kuo, Hsiao-Lin Peng, Chia-Chen Chu)

Telecom Laboratory

Chunghwa Telecom Co. Ltd.

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 2

Introduction

❖ Internationalization and localization are used for
website globalization.

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 3

Problems

❖ Hard to find out where exist un-international
characters

❖ Hard to manage translations in multiple locales

▪ inconsistent translations

▪ lack of keys, duplicated keys, out of order …

❖ Hard to share translations among different web
applications

▪ trivial to transfer translations from one application to
another

▪ different locale formats for different applications

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 4

How to solve?

❖ Internalization

▪ Implement a plugin(eslint-plugin-i18n) based on
ESLint to find out non-abstracted string were.

❖ Localization

▪ Implement a web tool called Keys-Translations
Manager (KTM) to manage all of the translations in
different locales for multiple applications.

❖ Automation

▪ Implement Babel transpiler plugin (babel-plugin-ktm)

▪ Implement Webpack moudle bundler plugin (ktm-
webpack-plugin)

▪ Use Jenkins to adopt CI/CD workflow

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 5

Automation Flowchart

UI code

Keys-Translations Manager (KTM)
+ KTM CLI

Jenkins Build
Machine

…

babel-plugin-ktm

Locales,
JS,
CSS,
…

…

Webpack Plugin exports necessary keys and translations in KTM to

locales
ESLint plugin finds out the code

need to be internationalized

Developers create keys and translations

to Keys-Translations Manager

ESLint

eslint-plugin-i18n

+

means our implements.

Babel

+

ktm-webpack-
plugin

+Webpack

Babel plugin extracts the internationalized keys used in application

Assets

Webpack bundles assets

(.js, .css, …)

Developer Phase

Automation Phase

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 6

Implementation:
eslint-plugin-i18n

This means the JS file has 5

uninternationalized

strings at line 207, 210, 213, 271, and 273.

❖ This ESLint plugin lists all strings not

internationalized in every single JavaScript file.

➢The plugin can be found at

https://www.npmjs.com/package/eslint-plugin-i18n

➢This plugin also can discover Japanese and Korean

characters.

https://www.npmjs.com/package/eslint-plugin-i18n

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 7

Implementation:
Keys-Translations Manager (KTM)

importdownload all locales for a specific application

input

edit or delete

specific

translations

support various output formats

share translations to multiple applications

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 8

❖ Initiate various locales and applications as needed

without altering the code.

❖ KTM can be found at https://github.com/chejen/keys-

translations-manager

KTM - configuration

both locales and applications are

configurable

https://github.com/chejen/keys-translations-manager

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 9

KTM CLI

output

➢ With KTM CLI, export automation can be one of the stages of CI/CD.

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 10

parse transform generate

Implementation:
babel-plugin-ktm

This plugin takes advantage of the AST generated by Babel

to collect the internationalized keys in source code.

JavaScript
Code

New
JavaScript

Code

Abstract Syntax Tree (AST)

babel-plugin-ktm

The way how Babel transpiles the code

❖With babel-plugin-ktm, the keys used throughout

the application would be discovered.

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 11

Implementation:
ktm-webpack-plugin

Source: https://webpack.js.org/

Ktm-webpack plugin

+

locales

➢ ktm-webpack-plugin takes the keys extracted from babel-

plugin-ktm, and retrieves their related translations from

KTM, and then generates the final locales.

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 12

Conclusion & Future work

❖ Conclusion

▪ We have designed and implemented a web application
KTM and various tools, including a KTM CLI, a ESLint
plugin, a Babel plugin and a Webpack plugin to
facilitate i18n/l10n.

▪ With the aid of the tools, we have successfully reduced
a lot of manual works and human errors. Also, our web
development has become more efficient as a result of
the automation.

❖ Future work

▪ Hope that we can do translation splitting in the future
for better performance.

Copyright © 2017 Chunghwa Telecom , All Rights Reserved. | 13

www.cht.com.tw

