Softwarization of 5G Core Networks

Jyh-Cheng Chen Department of Computer Science National Chiao Tung University jcc@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~jcc

Generic 2G Architecture Core Network (CN) PSTN VLR VLR HLR MSC **MSC** BS **Radio Access Network (RAN)**

Mobile Station

Outline

- Evolution of cellular networks from 1G to 4G
 - with focus on core networks
- What is 5G?
 - 5G applications
- Softwarization of 5G core networks

1G Wireless Networks

- Became commercially available in the early 1980s
- Analog radio technologies and circuit-switched transmission and networking technologies
- Main service: circuit-switched voice
- Lack the ability to support roaming between different network operators
- Three main 1G radio system standards
 - Advanced Mobile Phone Systems (AMPS) in North America
 - Total Access Communications Services (TACS) in the United Kingdom
 - Nordic Mobile Telephone (NMT) in Nordic countries

2G Wireless Networks

- Emerged in the early 1990s
- Digital signal processing and transmission technologies (increased radio capacity and spectrum utilization, enhanced voice quality, reduced power consumption, etc.)
- Standards for core networks
- In addition to circuit-switched voice, enabled the first waves of mobile data and mobile Internet services

2G Systems in North America

RAN

- IS-136: Time Division Multiple Access (TDMA)
- IS-95: Code Division Multiple Access (CDMA)
- Core Network
 - IS-41: support roaming between different network operators

2G System in Europe

- GSM (Global System for Mobile communications): RAN and core network
- Radio frequencies
 - 900 MHz and 1800 MHz in Europe
 - 800 MHz and 1900 MHz in the United States
- Services
 - circuit-switched voice
 - 9.6 Kbps circuit-switched symmetric channel as a data connection to access the Internet
- Most widely used 2G wireless network standards in the world

2G System in Japan

- Personal Digital Cellular (PDC) network
- Services
 - circuit-switched voice
 - data services over 9.6 Kbps radio channels

2.5G Wireless Networks

- Provide higher radio system capabilities and per-user data rates than 2G systems, but do not yet achieve all the capabilities promised by 3G systems
- General Packet Radio Services (GPRS)
 - provide a packet-switched core network as an extension to GSM core networks
- Enhanced Data Rates for Global GSM Evolution (EDGE)
 - provide advanced modulation and channel coding techniques to increase the data rates of GSM radio systems
 - support data rates up to 384 Kbps (also regard as a 3G system due to its high speed)

3G Wireless Networks

- Significantly increase radio system capacities and per-user data rates over 2G systems
- Support IP-based data, voice and multimedia services
- Enhance quality-of-service (QoS) support
- Improve interoperability

Third-Generation Partnership Project (3GPP)

- 3G core networks will evolve the GSM core network platform to support circuit-switched mobile services and to evolve the GPRS core network platform to support packet-switched services.
- 3G radio access technologies will be based on the Universal Terrestrial Radio Access Networks (UTRANs) that use Wideband-CDMA (WCDMA) radio technologies.

Third-Generation Partnership Project 2 (3GPP2)

- 3G core networks will evolve the IS-41 core network to support circuit-switched mobile services and define a new packet core network architecture that leverages capabilities provided by the IS-41 core network to support IP services.
- 3G radio access technologies will be based on cdma2000 radio technologies.

3GPP conceptual network architecture (Release 5)

3GPP High-Speed Packet Access (HSPA) 3GPP2 Evolution - Data Optimized (EV-DO)

Two 4G candidate systems are commercially deployed:

the Mobile WiMAX standard

4G

- first used in South Korea in 2007
- the first-release Long Term Evolution (LTE) standard
 - In Oslo, Norway and Stockholm, Sweden since 2009

3GPP Architecture (Release 8)

3GPP Evolved Packet System (EPS)

- Radio Side (LTE Long Term Evolution)
 - Evolved-UTRAN (E-UTRAN)
- Network Side (SAE System Architecture Evolution)
 - Evolved Packet Core (EPC)

3GPP Release 8 is the first release of the SAE

- Packet-switched core network only for voice, data, video, and other multimedia traffic
- Roaming between 3GPP, non-3GPP (trusted and nontrusted), and fixed access networks
- Designed to optimize network performance

LTE/SAE Architecture

- All-IP network
- Flat architecture
- Reduce complexity
- Seamless mobility
- Network sharing: a single E-UTRAN can be shared by multiple operators

E-UTRAN

- Only eNodeB in E-UTRAN: support all L1 and L2 features
 - The functions of RNC are distributed between eNodeB, MME, S-GW.
- X2 interface: minimize packet loss due to mobility

Comparison with 3G/UMTS

- Simplified architecture/Flat architecture
- Separation of control plane and user plane
- Packet-switched only core network
- Roaming between 3GPP, non-3GPP (trusted and non-trusted), and fixed access networks
- Packets are routed through S-GW for intra E-UTRAN mobility

Architecture Migration

NB: NodeB (base station) RNC: Radio Network Controller SGSN: Serving GPRS Support Node GGSN: Gateway GPRS Support Node

"Flat IP" = less hierarchy means lower latency

More and more applications

Lower and lower latency

More and more data transmitted

Explosive social and multimedia services

Not just smartphones anymore

Mainly used by human beings 1G and 2G were about voice 3G was about data 4G is about video

1G to 4G

SG, will be about intelligent networks that can handle billions of connected devices while remaining stable and operational.

5G

Source: http://money.cnn.com/2012/03/08/technology/5G-wireless/index.htm?iid=GM

5G Vision

NGMN 5G vision

- Faster data rate: 1~10 Gbps
 - Download HD videos in seconds, AR, VR
- Lower end-to end latency: 1~10ms
 - Autonomous driving, Tactile Internet, Interactive applications
- Higher user mobility: >500km/h
 - High Speed Train
- Broadband access in dense areas
 - HD video/photo sharing in stadium
- Ultra-reliable communications
 - E-health, Remote surgery, Drones
- Massive machine type communications
 - Smart grid, Smart transportation, Industrial 4.0 (Internet of Things)

Three key use cases of 5G

Key capabilities of 5G

What's wrong with the current 4G core network?

All Propriety Hardware

Huawei eCNS600 eLTE Core Network Access System

High cost, low revenue

limits innovation

Not flexible

How to solve?

Softwarization

(SDN/NFV)

5G architecture based on SDN/NFV

Network Function Virtualization

Hardware Layer (Backbone)

SDN

Benefits of Softwarization

- Reduced cost
 - Reduced equipment costs and reduced power consumption
 - Eliminate unneeded feature
 - Scale in/out according to network demand
- Rapid innovation
 - Innovation at software speed
 - Can do experiments
 - Standards will follow software deployments
 - Open up network innovation to great minds around the world
- flexibility
 - Deploy services according to geography
 - Deploy services according to user characteristics
 - Dynamically route packets to its particular network slice

5G roadmap and timeline

Research topics of softwarization

- How to integrate OpenFlow-based data plane with legacy 4G core network data plane?
- How to retain the required performance for network entities while it is virtualized?
- How to design and implement the automatic self-management MANO system?
- •••••

How to implement customized VNFs efficiently for a flexible OPEN 5G core?

For remote-control surgeryFor high-speed users

For remote-control surgery

Low latency GTP module
 High security NAS and S6a module

For high-speed users

High mobility → GTP module
 Frequent handover and location update
 NAS module

Reconfigurable Core (RECO)

- Common modules
 - common MME libraries which different types of users share. E.g., UDP, SCTP, hash table
- Object-oriented customized modules
 - customized modules which differ between different types of users
- Dynamic Linking Framework
 - parse descriptor load and initialize MME Common Libraries Corresponding customized moduleSamic Linking Framework 60

oriented

Verify the correctness of RECO MME

Equipment (1/2)

UE1: Sony Xperia T3 D5103 UE2: ASUS UX410 & Huawei LTE Dongle Programmable SIM card programmed by **PySIM**

ustom-tailored GSM solutions rom RAN to Core Network

isit us at http://sysmocom.de/

First-hand expertise in protocol R&D from A-bia to SS7/MAP Support, training and development for OpenBSC, OsmoSGSN · Low-cost GSM pice-cell platform sysmoBTS Small, PBX-style autonomous GSM networks

Equipment (2/2)

LTE Small Cell: Wistron NeWeb OSQ4G-01E2

Demo Video

	Open source	Completeness	Status	Reduce Disk & memory	Flexibility	OOP design
Open5GCore	No, very expensive	V	Active	V	V	
OpenEPC	No, very expensive	V	Active	V	V	
nwEPC	V		Frozen			
Openair-cn	V		Active			
RECO	V		Active	V	V	V

Concluding remarks of RECO

- Absolutely free
- Easy to install (hopefully)
- Object-Oriented Programming (OOP) design
 - easier to understand, reuse, modify, and extend
 - Easily to add your own modules
 - Real core network to implement your ideas, not just simulation and/or math analysis
 - Professors can design labs for students

Building Blocks For 5G CN

RECONet

 This is just a first step.
 Please use it, give us feedbacks, and even join us to develop the first comprehensive, free, and open-source
 5G core network.

Jenee

1ak

For more information

- Website: <u>http://www.reconet.org/</u>
- Video: <u>https://youtu.be/6iuCq350LYM</u>
- Source code: <u>https://github.com/RECONet/RECO</u>
- Paper: "Poster RECO: A Reconfigurable Core Network for Future 5G Communication Systems," to appear in ACM MobiCom, Snowbird, Utah, USA, Oct. 2017

