

Scalable TDMA Cluster-based MAC (STCM) for Multichannel Vehicular Networks

September 27, 2017

Nurullah Shahin and Young-Tak Kim

Advanced Networking Technology Lab. (*yuANTL*) Dept. of Information & Comm. Eng, Graduate School, Yeungnam University, Republic of Korea (Tel : +82-53-810-3940; Fax : +82-53-810-4742 http://antl.yu.ac.kr/; E-mail : nurullah@ynu.ac.kr, ytkim@yu.ac.kr)

Outline

Introduction

- Background and Related Work
- The Scalable TDMA Cluster-Based MAC (STCM)
- Performance Evaluation
- Conclusions
- References

Introduction: Motivation (1/4)

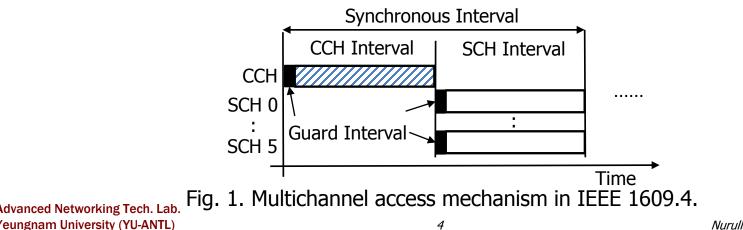
Intelligent Transportation Systems (ITS) provides :

- Time-critical safety applications
 - accident avoidance and mitigation of road intersection collision
- Traffic efficiency
 - current road traffic data, ITS service advertisement
- Infotainment applications
 - tourism and shopping information

Requirements of Vehicular Communication:

- Safety applications
 - High reliability/high packet delivery ratio
 - Strict delay constraints (100 ms)
 - High security
- Non-safety applications
 - High throughput

Current Standards & Technologies for the MAC and PHY layer:

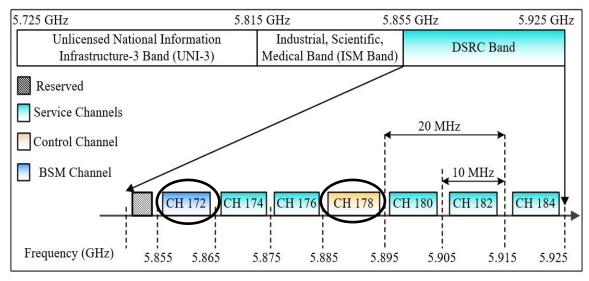

- IEEE 1609.4. (CSMA/CA)
- IEEE 802.11p

Introduction: Challenges (2/4)

- Major Challenges of channel access mechanism:
 - Poor utilization of control channel interval (CCHI) and service channel interval (SCHI) (fixed value)
 - In a congested vehicular traffic, the limited length of CCHI is unable to provide sufficient bandwidth for safety messages
 - In case of less safety message, CCHI is not fully used
 - Similarity for the service channel interval (SCHI) for Non-safety message exchanges
 - Poor utilization of multichannel access method
 - During the CCHI, all SCHs are not used
 - During the SCHI, CCH is not used

• Underutilization of Multichannel

Unused default allocation time for data exchange, both in low/heavy traffic density



APNOMS' 2017 Nurullah Shahin and Young-Tak Kim

Introduction: Contributions (3/4)

The major contributions of this paper: Scalable TDMA Cluster-based MAC (STCM)

- The U.S. Department of Transportation (DOT) and the Crash Avoidance Metrics Partnership (CAMP) Vehicle Safety Communications 2 (VSC2) Consortium have proposed a new deployment option –
 - CH 178 is left for the exchange of management information only, including WAVE Service Advertisements (WSAs)
 - CH 172 is dedicated to V2V Basic Safety Messages (BSMs)

Fig. 2. Frequency spectrum allocation in the DSRC

Advanced Networking Tech. Lab.

Introduction: Contributions (4/4)

The major contributions of this paper (cont.): Scalable TDMA Cluster-based MAC (STCM)

- 1) Two mini-slots from two different channels for every vehicle in each synchronous interval (in 100ms)
 - Two dedicated CCHs to serve more vehicles
 - Increase collision-free channel access
- 2) Dynamic reallocations of unused SCH slots
 - Enhance bandwidth utilization of the service channels (SCHs)
- 2) Balanced slot allocations
 - Provide fairness by equal sharing of the wireless medium

K. Bilstrup et al. [8], [9]- a decentralized scheme called self-organizing TDMA (STDMA)

- vehicles can select the time slot in a logical frame based on the position information
 - However, the presence of hidden terminals seriously affects the performance
 - In the high vehicle density, there are more overlap in time slots

Background and Related Work

The TC-MAC [6][7]

- Integrates the centralized approach of cluster management and a new scheme for TDMA slot reservation
- Delivery of safety messages within reasonable time constraints
- Less collisions and packet drops in the SCHs

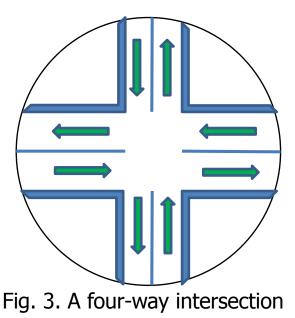
Limitation of The TC-MAC

- At light traffic load of vehicles, the ratio of missing safety/update messages is up to 50%
- Even in heavy traffic there is some missing at least 4% of safety packets
- TC-MAC only allocates default SCH slot, so the utilization of SCH slots is limited up to 50% depending on the traffic load of vehicles
- Both CCH and SCHs provide low throughput and poor utilization of channels.
- It does not expect all vehicles in the cluster to be communicating, or active, simultaneously.

Scalable TDMA Cluster-Based MAC (STCM) (1/8)

TDMA Cluster-Based MAC algorithm provides:

- Collision free channel access for both CCH and SCHs
- Reducing of hidden terminal problem
- Increasing safety message reliability
- Fairness of accessing the channels
- Efficient use of multichannel


Assumptions:

- Vehicles are equipped with GPS
- Single transceiver in On Board Unit (OBU)
- Two CCHs + Five SCHs
- Fixed SCH slot size (t)
- Fixed CCH mini-slot size (t/nSCH) [nSCH = Number of SCH]
- Each vehicle in the cluster will receive a local ID (from 0 to N)
- The cluster head (CH) always have ID 1
- The ID 0 is reserved for "new entering vehicle"

Scalable TDMA Cluster-Based MAC (STCM) (2/8)

Maximum Network Size of the VANETs:

- 4- Lane in each direction
- Inter-vehicle distance : 7.5 meters (including vehicle length) (if we consider high dense)
- RF- signal range: 300 meters
- Number of vehicles per lane = ${}^{300}/_{7.5} = 40$ vehicles
- Total 8 Lane 320 vehicles in 300 meter range
- Therefore, at least around 300 vehicles should be handled

Scalable TDMA Cluster-Based MAC (STCM) (3/8)

Algorithm 1. Allocation of default CCH mini-slots and SCH slot

Algorithm 1. Allocation of mini-slots and slot by the vehicles	8			
<i>i i d</i> : vehicle ID from 0 to N_{max} <i>i nSCH</i> : number of service channels <i>N_{max}</i> : maximum number of vehicles in a logical frame <i>K</i> : parameters for determining the position of mini-slots <i>L</i> : parameters for determining the position of mini-slots <i>M</i> [<i>i</i>]: parameters for determining the position of mini-slots <i>M</i> [<i>i</i>]: parameters for determining the position of mini-slots <i>M</i> [<i>i</i>]: parameters for determining the position of mini-slots <i>M</i> [<i>i</i>]: parameters for determining the position of mini-slots <i>M</i> [<i>i</i>]: parameters for determining the position of mini-slots <i>M</i> [<i>i</i>]: parameters for determining the position of mini-slots <i>M</i> [<i>i</i>]: parameters for determining the position of mini-slots <i>M</i> [<i>i</i>]: parameters for determining the position of mini-slots <i>CCHSlot</i> : slot number where CCH mini-slot contains <i>CCH</i> ₁ : BSMCH (CH 172) selection <i>CCH</i> ₂ : CCH (CH 178) selection <i>SCHSlot</i> : slot number of SCHs <i>SCHSlot</i> : slot number of SCHs <i>SCHch</i> : channel number among the five SCHs . for <i>id</i> = 0 <i>to</i> N_{max} do . $K = id\%(2 \times nSCH)$		if $(i == 1)$ then Assign CCH_1 (CH 172) else Assign CCH_2 (CH 178) end if else CCHSlot[i] = $(2 \times [M[i]] - nSCH/2)\%[N_{max}/nSCH]$ if $(i == 1)$ then Assign CCH_1 (CH 172) else Assign CCH_1 (CH 178) end if end if end if end for SCHSlot = $[id/nSCH]$ SCHChannel = $id\%$ nSCH		
4. miniSlot[i] = id%nSCH 5. if $i == 1$ then 6. M[i] = id/(2 × nSCH) 7. else 8. if $K < nSCH$ then 9. M[i] = (id - K + 2 × nSCH - 1)/(2 × nSCH) 10. else 11. M[i] = (id - K + 3 × nSCH - 1)/(2 × nSCH) 12. end if 13. end if 14. L = [M[i]] + 0.5	33.	end for		
15. if $(i == 1 \text{ AND } M[i] < L) \text{ OR}$ $(i == 2 \text{ AND } M[i] \le L)$ then 16. CCHSlot[i] = $(2 \times [M[i]] - (nSCH/2 + 1)\%[N_{max}/nS]$	CHJ			

Scalable TDMA Cluster-Based MAC (STCM) (4/8)

STCM default slot reservation: On the CCHs, Vehicle with ID 0 assigns –

- Two CCH mini-slots –
- $miniSlot_1 = id \% nSCH = 0$
- $CCHSlot_1 = \left(2 \times \left[M[i]\right] \frac{nSCH}{2} + 1\right) \% \left[N_{max}/nSCH\right]$ = 57 = Slot 57
- $pair1(CCH_1, CCHSlot_1, miniSlot_1)$ = (CH 172, 57, 0)
- $miniSlot_2 = id \% nSCH = 0$
- $CCHSlot_2 = (2 \times [M[i]] + 1 nSCH/2)%[N_{max}/nSCH]$ = 58 = Slot 58
- pair2 (CCH_2 , $CCHSlot_2$, miniSlot_2) = (CH 178, 58, 0)
- On the SCH, Vehicle with ID 0 assigns
 - One SCH slot –

Advanced Networking Tech. Lab.

eungnam University (YU-ANTL)

- $SCHSlot = \lfloor id/nSCH \rfloor = 0 = Slot 0$
- SCHChannel = id% nSCH = 0 = SCH 0

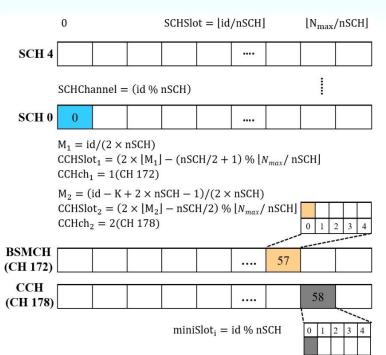


Fig. 4. TDMA frame structure of ETCM. Example: Vehicle ID 0

Scalable TDMA Cluster-Based MAC (STCM) (5/8)

STCM default slot reservation:

	←					TDMA MAC	C FRAME (1	00 ms)					
Channel/Slot	Slot0	Slot1	Slot2	Slot3	Slot4	Slot5	Slot6	Slot7	Slot8	•••	Slot57	Slot58	Slot59
SCH4	4(1)	(9(X)D	14(1)	(19(0)B)	24(0)	29(0)	34(0)	39(0)	44(0)		289	294	299
SCH3	3(1)	8(1)		(18(0)[13(1)]F	> 23(0)	28(0)	33(0)	38(0)	43(0)		288	293	298
SCH2	2(1)	(7(1)E)	12(1)	[17(0)[9(1)]D	22(0)	27(0)	32(0)	37(0)	42(0)		287	292	297
SCH1	1(1)	6(1)C	11(1)	16(0) [6(2)]	21(0)	26(0) [6(3)]	31(0)	36(0) [6(4)]	41(0)		286	291	296
SCH0	0(1)	(3(1)A)	10(1)	15(0) [5(2)]	20(0)	25(0) [5(3)]	30(0)	35(0) [5(4)]	40(0)		285	290	295
BSMCH (CH 172)	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54			0-4	5-9	10-14
CCH (CH 178)	10-14	15-19	20-24	25-29	30-34	35-39	40-44	\ 45-49			295-299 /	0-4	5-9
0 1 2 3 4 0 1 2 3 4													
Mini Slot Number in a Slot													

Vehicle ID Number of Data Packets to be sent on SCH slot

Fig. 5. TDMA map of STCM protocol (N = 45, nSCH = 5, nCCH = 2.)

Advanced Networking Tech. Lab. Yeungnam University (YU-ANTL)

Scalable TDMA Cluster-Based MAC (STCM) (6/8)

Non-safety Message Exchanges in STCM –

- Before sending the non-safety messages, handshake messages are exchanged through the CCH mini-slots of the sender
- Different scenarios should be considered -
 - Vehicles, V_A [ID 5, SCH slot (*SCHch*, *SCHSlot*) = (0, 1)] and V_B [ID 19, SCH slot (*SCHch*, *SCHSlot*) = (4, 3)]
 - SCH slots of vehicle V_A and V_B are on different position and not consecutive
 - Vehicle V_A can use both V_A and V_B default slots without any problem
 - Vehicles, V_C [ID 6, SCH slot (*SCHch*, *SCHSlot*) = (1, 1)] and V_D [ID 9, SCH slot (*SCHch*, *SCHSlot*) = (4, 1)]
 - SCH slots of V_C and V_D are on same slot but on different SCHs channels
 - vehicle V_c can only use only its default SCH slot
 - Vehicles, V_E [ID 7, SCH slot (*SCHch*, *SCHSlot*) = (2, 1)] and V_F [ID 13, SCH slot (*SCHch*, *SCHSlot*) = (3, 2)]
 - vehicle V_E could not use two consecutive SCH slots
 - Using two consecutive SCH slots creates missing of safety/update messages

Scalable TDMA Cluster-Based MAC (STCM) (7/8)

Reallocation of unused STCM Slot –

- Assume, three vehicles V_X, V_Y , and V_Z belong to the even number position time slot and require 2, 3 and 0 SCH slots, respectively.
- In STCM, the Shortest Job First (SJF) algorithm is used to give the prioritization to reallocate the empty SCH slots by a station.
- According to SJF, the vehicle V_X gets the permission from V_Z to use the upcoming SCH slot of vehicle V_Z at the second cycle
- If two or more vehicles have requested for the same number of SCH slots, then the priority will be given to a vehicle with the smaller ID

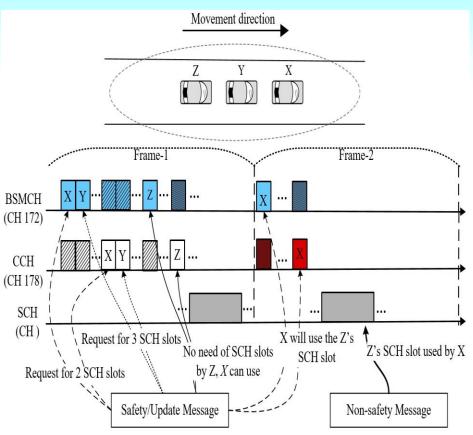
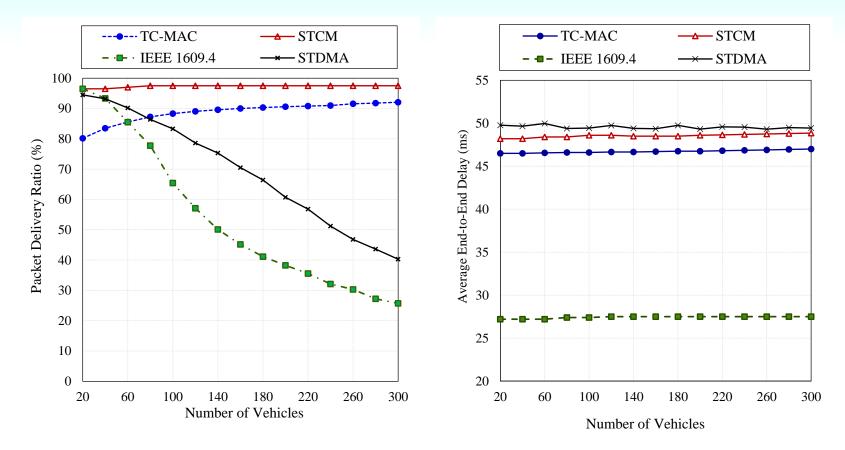


Fig. 6. Sequence Diagram for reallocating of SCH slot

Scalable TDMA Cluster-Based MAC (STCM) (8/8)

Reallocation of unused STCM Slot (cont.) –

- Vehicles those use even number position time slots can use only empty SCH slots at the even position.
- Similarly, vehicles using odd slots can only access the odd number position SCHs slots
- As shown in Fig.3, when vehicle V_5 has many non-safety packets while vehicles V_{15}, V_{25}, V_{35} do not have any packet.
 - Vehicle 6 that listens the status information of vehicles V_{15}, V_{25}, V_{35} from the CCH mini-slots
 - Broadcasts required SCH slot information through update message to all vehicles.
 - The three vehicles then apply SJF algorithm to make the priority among requested vehicles
 - At the next cycle, they give confirmation through their mini-slots regarding default SCHs slots
 - Vehicle 6 broadcasts along with reallocating information to the receiver
 - It makes the receiver to tune to SCH slots of vehicles $V_{15}, V_{25}, V_{35}...$ and to prevent access of those slots from others


Performance Evaluation (1/3)

Simulation Configuration					TABLE II. Simulation Parameters				
	anacion	comga	Parameter	Value					
• ns-3.22 simulator [12]			Physical rate of each channel	6 Mbps					
					Number of CCH (<i>nSCH</i>)				
 Intelligent Driver Model (IDM) and the 					Number of SCHs (<i>nCCH</i>)	6			
			Safety/update Size (MAC payload)	200 bytes					
Ivi	OBIL lane	change m	Non-safety Size (MAC payload)	1024 bytes					
	nalo DE tr	anccaivar	Transmission Range	300 m					
	ngle RF tra	ansceiver			Frame Size	100 ms			
• fr	omo cizo i	c 100 mc f	or all prot	ocolo	Simulation time	500 s			
 frame size is 100 ms for all protocols 					IEEE 1609.4 WAVE [1]				
• cofotulundata maccagae have the					CCH interval	50 ms			
 safety/update messages have the 					SCH interval	50 ms			
bounded delay of 100 ms				Minimum contention window (CW_{min})	3				
bounded delay of 100 ms					Maximum contention window (CW_{max})	15			
			Slot duration	9 μs					
			SIFS	16 µs					
					TC-MAC [6] [7]				
Т		ITY LEVELS IN T	Mini Slot Size	0.263 ms					
17		TION RANGE 30	SCH Slot Size	1.5 ms					
		TON RANGE JU	Total Number of SCH Slot in a Frame378 slot						
					STDMA [8][9]				
Density	Number of	Vehicles Gap	Number of	Number of	Minimum number of candidate slots	5 slots			
Level	Vehicles pe	(m)	Vehicles	Vehicles	Slot reservation duration	600 ms			
Lever	r Lane	(111)	(2 lanes)	(3 lanes)	Guard Interval (GI)	30 µs			
Low	10	30	40	60	STCM	0.001			
Medium	20	15	80	120	Mini Slot Size	0.301 ms			
High	30	10	120	180	SCH Slot Size	1.625 ms			
			_		Total Number of SCH Slot in a Frame	300 slots			
Very High	40	7.5	160	240	Guard Interval (GI)	$30 \ \mu s$			
					Inter Frame Gap (IG)	700 µs			

Performance Evaluation (2/3)

Packet Delivery Ratio (PDR) and Average End-to-End Delay

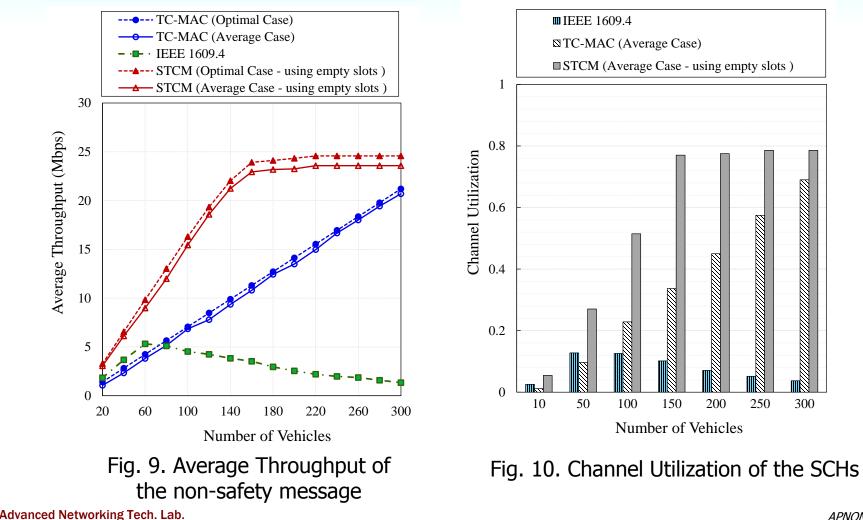


Fig. 7. Packet Delivery Ratio (PDR) of the safety messages

Advanced Networking Tech. Lab. Yeungnam University (YU-ANTL) Fig. 8. Average End-to-End Delay of the safety messages

Performance Evaluation (3/3)

Average Throughput of the Non-safety messages and Channel Utilization of the SCHs

APNOMS' 2017 Nurullah Shahin and Young-Tak Kim

eungnam University (YU-ANTL)

Conclusions and Future works

• We proposed Scalable TDMA cluster-based MAC (STCM) :

- 1) Enhanced performance with collision-free channel access and reliable time-critical safety message
 - two mini-slots for each vehicle in each 100ms sync interval

2) Enhanced service channel utilization

dynamic reallocation of unused slots

3) Increased fairness among vehicles

balanced slot allocations

Simulation results show that:

- the packet delivery ratio of safety messages was greatly enhanced with 97% delivery
- throughput (channel utilization) was improved on average 90% more than TC-MAC

Future Works:

- Dual-radio vehicular transceivers
- Multi-rate and Multihop

References

- **1.** IEEE 1609.4, "Wireless Access in Vehicular Environments (WAVE) -Multi-channel Operation," Sept 2011.
- 2. IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems— Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, Std. 802.11p-2010, 2010.
- 3. C. Campolo and A. Molinaro, "Multichannel Communications in Vehicular Ad Hoc Networks: A Survey," *IEEE Communications Magazine*, May 2013, pp. 158-169.
- 4. H. A. Omar, W. Zhuang, and L. Li, "VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs," *IEEE Trans. Mobile Comput.*, vol. 12, no. 9, pp. 1724–1736, Sep. 2013.
- 5. N. Shahin and Y. T. Kim, "An enhanced TDMA Cluster-based MAC (ETCM) for multichannel vehicular networks," in *International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT)*, Cairo, 2016, pp. 1-8. doi: 10.1109/MoWNet.2016.7496599
- 6. M.S. Almalag, S. Olariu, M. Weigle, "TDMA cluster-based MAC for VANETs," in *IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks*, WoWMoM, San Francisco, CA, 2012, pp.1–6.
- 7. M.S. Almalag, El-Tawab, S. Olariu, M.C. Weigle, "A modified TC-MAC protocol for multi-hop cluster communications in VANETs," in *International Conference on Connected Vehicles and Expo (ICCVE)*, Las Vegas, NV, 2013, pp.832-837.
- 8. K. Bilstrup, E. Uhlemann, E. G. Strom, and U. Bilstrup, "On the ability of the 802.11 p MAC method and STDMA to support realtime vehicle-to-vehicle communication," *EURASIP J. Wireless Commun. Netw.*, vol. 2009, no. 1, pp. 902414-1–902414-13, Jan. 2009.
- 9. K. S. Bilstrup, E. Uhlemann, and E. Strom, "Scalability issues of the MAC methods STDMA and CSMA of IEEE 802.11p when used in VANETs," in *Proc. IEEE ICC*, May 2010, pp. 1–5.
- 10. Vehicle Safety Communications Project, Final Report, DOT HS 810 591, April 2006.
- 11. The Network Simulator—ns-3. [Online]. Available: https://www.nsnam.org/
- 12. Hadi Arbabi and Michele C. Weigle, "Highway mobility and vehicular ad-hoc networks in ns-3," In *Proceedings of the 2010 Winter Simulation Conference (WSC)*, pages 2991–3003, December 2010.
- 13. Q. Chen, D. Jiang, V. Taliwal, and L. Delgrossi, "IEEE 802.11 based vehicular communication simulation design for NS-2," in *Proc. ACM VANET*, Sep. 2006, pp. 50–56.
- 14. STDMA for NS3. [Online]. Available: http://dsn.tm.kit.edu/english/ns3-stdma.php

Thanks Questions?