A Framework for Discovering Maritime Traffic Conflict from AIS Network

Po-Ruey Lei* ,Tzu-Hao Tsai**, Yu-Ting Wen**, Wen-Chih Peng**

*R.O.C Naval Academy ,**National Chiao Tung University

APNOMS 2017 Sep.27

Outline

Introduction
Framework
Experiments
Conclusion
Q & A

Introduction Maritime Traffic Data: Trajectory data collect from AIS Network

- AIS Trajectory Data
 - A rich trajectory data collected from ships' movement by Automatic Identification System (AIS)
- Mining maritime traffic knowledge hidden in AIS trajectories

AIS System (http://www.digitalmarine.kr/info/ais.html)

AIS trajectory data

Introduction Maritime Traffic Near-Collision Detection

- Traffic accident: Few samples, high randomness
- Near-collision: cause accident, more data
- Traffic Conflict: Near collision

Introduction Discovery maritime traffic conflict from AIS network

Applications:

- conflict behavior analysis
- conflict early detection for maritime management
- collision avoidance

Introduction More challenges in AIS conflict detection

- The vehicles' movements are constrained by road network
- The ships could move free in the maritime area
 - More Complex to discover the trajectories with similar movement behavior

Trajectory from road network

AIS Trajectory in maritime

Introduction More challenges in AIS conflict detection

- In road networks, possible collision points are in the intersection
- But in maritime traffic, there are no such intersection and collision may happen in every place.
- Further more, collision in maritime may not only involve two ships, but more ships can get hurt in one accident.

Introduction Existing approaches for detecting conflict

Road network

- K. El-Basyouny and T. Sayed, "Safety Performance Functions using Traffic Conflicts," Safety Science, Vol. 51, No. 1, pp. 160-164, 2013.
- U. Shahdah, F. Saccomanno, and B. Persaud, "Integrated Traffic Conflict Model for Estimating Crash Modification Factors," Accident Analysis and Prevention, Vol. 71, pp. 228-235, 2014.

Fig. 1. Distribution of observed conflicts by type.

Introduction Existing approaches for detecting conflict

Maritime traffic

- D. A. Kumar, H. C. Chin, and M. M. HAQUE, "Modelling Port Water Collision Risk using Traffic Conflicts," Journal of Navigation, Vol. 64, No. 4, pp. 645-655, 2011.
- Q. Li, J. S. L. Lam, and H. S. L. Fan, "Multi-link-ahead Conflicts Prediction in Dynamic Seaport Environments." Simulations, Serious Games and Their Applications, pp. 69-84, 2014.

Maritime Traffic Conflict Mining

- Input : AIS trajectory dataset D_A
- Output : Clusters of conflict trajectories CCT
- Conflict Trajectories:
 - Set of ships that their distance are getting closer and closer

AIS dataset

Conflict trajectory

Framework DCPA and TCA

Framework Cluster of conflict trajectories

Experiments

- AIS trajectory dataset: a nine-month dataset of 20639 trajectories (21202212 points)
- Maritime area:100 km × 100 km.
- $D_0 = 2km$
- Result:
 - ▶ 452303 CoE
 - 236859 CoC
 - 185050 CCT(Cluster of Conflict Trajectories)

Experiments Case visualization

Experiments Case visualization

Experiments Spatial distribution

Experiments Cases for Effectiveness

Experiments Spatial-Temporal distribution

a.0600~1159

b.1500~1859

Experiments Spatial-Temporal distribution

Conclusion

We proposed a framework of maritime traffic conflict mining

- Encounter Clustering
- Conflict detection
- Merge to conflict trajectories
- Future work:
 - conflict early detection
 - conflict behavior analysis
 - collision avoidance analysis

Q & A

Definition

- $D_A(t_i) = \{S_1^{t_i}, S_2^{t_i}, S_3^{t_i} \dots S_n^{t_i}\}$
 - Dataset in timeslot t_i
- $\triangleright \quad S_n^{t_i} = \left(x_n^{t_i}, y_n^{t_i}, v_n^{t_i}, c_n^{t_i} \right)$
 - Each raw data point include its position, speed and course
- $CoE_k(t_i) = \left\{ S_{k,1}^{t_i}, S_{k,2}^{t_i}, S_{k,3}^{t_i} \dots S_{k,m}^{t_i} | dist(S_{k,x}^{t_i}, S_{k,y}^{t_i}) < d_0 \right\}$
 - Cluster of encounter
- $\triangleright \quad CoC_k(t_i) = \left\{ S_{k,1}^{t_i}, S_{k,2}^{t_i}, S_{k,3}^{t_i} \dots S_{k,m}^{t_i} | TCA\left(S_{k,x}^{t_i}, S_{k,y}^{t_i}\right) > 0 \right\}$
 - Cluster of conflicts