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Introduction (1/2)

• The connected cars offer connectivity on wheels 
providing comfort and safety
– Such an advanced technology enables the driver to 

connect with various online platforms or services

• The global connected car market has the potential to 
significantly boost revenues of car manufacturers

3“Machine-to-machine connections and revenue in the automotive sector, 2011-2022” 
[source: Machina Research, 2013]



Introduction (2/2)

• In CES 2016, Qualcomm (with Audi) announced a 
Snapdragon 820 automotive processor for the 
connected cars
– Qualcomm is providing the foundation for the next 

generation of infotainment platforms for automotive

– E.g., Snapdragon LTE modem, IEEE 802.11ac, Bluetooth 4.1
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[source: www.globalwindow.org, www.androidheadlines.com]

http://www.globalwindow.org/


Software-defined Vehicular Cloud

• The resources of vehicles in VANETs are most likely 
not utilized (or under-utilized) for vehicular services
– Computing, storage, and communication resource

• Software-defined Vehicular Cloud (SDVC) [1]
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SDVC: Control plane

• Certificate authority (CA)
– Assigns the public key and private key pairs along 

with the vehicle’s certificate

• VC Controller

– Collects global information of vehicles 

• E.g., vehicle ID, velocity, GPS location, and resource

– Abstracts the vehicle’s resources and maintains 
global view of vehicles

– Performs resource distribution (i.e., VC formation) 
using V2X communications
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SDVC: Data plane

• Vehicle

– Registers local information of vehicles to the VC 
controller through the nearest RSU

• Updates local information of vehicle to the VC 
controller periodically

– Shares the resource via V2X communication

• Type: Resource requester (RR), resource provider (RP)

• Road side unit (RSU)

– Collects local information of vehicles

– Forwarders information to the VC controller
7



SDVC: Operation
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Vehicle (RR) RSU1 VC Controller RSU2 Vehicle (RP)

(2) Information Register Message

(3) Information Collection
<Up-to-date Information>

(1) Information Update Message

(7) Data Transmission

(4) Service Provisioning Request Message

(5) VC Formation

(6) Service Confirmation Response Message



9

• Collaborative security attack detection 
mechanism in software-defined 
vehicular networks
– Motivation

– Detection of attacks using multi-class SVM



Collaborative security attack detection: 
Motivation (1/2)
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• Security issues have been investigated in VANETs 
research [2]

• In traditional VANETs, a public key infrastructure (PKI) 
is commonly adopted by IEEE 1609.2 [3]

– A certificate revocation list (CRL) is issued by the 
certificate authority (CA) periodically

– There is no standard mechanism proposed for CRL

• The PKI can only ensure fundamental security 
requirements in VANETs
– Authentication and message integrity



Collaborative security attack detection: 
Motivation (2/2)

• There are a number of attacks in VANETs [4][5]

– Safety applications are very important in nature as these 
are directly related to drivers and their lives

– The purpose of attacks is to create problem for drivers, and 
as a result services are not accessible

– E.g., Sybil attack, denial of service (DoS) attack

• Attackers are moving and modifying their attack 
patterns continuously
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Collaborative security attack detection mechanism 
uses multi-class support vector machine (MC-SVM) to detect 

various types of attacks dynamically



Collaborative security attack detection: 
Overview 

• Control plane
– Certificate authority (CA)

• Issuing the certificate

– VC controller 

• Information collection

• VC formation

• Generating pseudonym

• Conducting multi-class 
SVM

• Data plane
– Road segment unit (RSU)

– Vehicle 
12



Collaborative security attack detection:
Operation

13



Detection of attacks using MC-SVM:
Example
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Detection of attacks using MC-SVM:
Modeling

• Multi-class SVM features
– Packet drop rate (PDR)

• 𝑃𝐷𝑅 =
𝑇ℎ𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝐷𝑟𝑜𝑝𝑝𝑒𝑑

𝑇ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

– Packet modification rate (PMR)

• 𝑃𝑀𝑅 =
𝑇ℎ𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑

𝑇ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

– RTS flooding rate

• IEEE 802.11p RTS packet

– Wireless channel status [0, 1]

• Busy status of channel in a specific period of time

– Packet interval, packet size

• Average packet interval and size in the flow
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Simulation results: 
Topology

• MC-SVM simulator based on Matlab 2015a

– Dataset: KDD Cup 1999 (by MIT Lincoln Labs) *
• The objective is to survey and evaluate research in IDS

• Attacks: DoS, Probing, R2L, U2R + Normal (# 86,678 dump (10%))

– Comparison scheme
• SVM-Nearest Neighbor, SVM-Individual

– Simulation parameters

16

Random 
Generation

[*] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html



Simulation results: 
KDD Cup 1999 dataset features

• KDD Cup 1999 dataset features
– Basic features (1-9)         [DoS, Probing attack]

• duration, protocol, service, flag, src_byte, dst_byte, land, wrong_fragment, urgen

– Content features (10-28)         [R2L, U2L attack]
• count, srv_count, serror_rate, srv_serror_rate, …
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MC-SVM kernel functionKDD Cup 1999 features



Simulation results: 
Confusion matrix

• Confusion matrix
– Test dataset: # 300
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Simulation results: 
Effect of vehicle density (1/2)

• The number of vehicles: [10, 20, 30, 40, 50]
– MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)

– Vehicle: Random (# 100 – 1,000)
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Precision Recall

22.76 – 37.4%p

2.46 – 16.6%p

16.38 – 34.8%p

2.68 – 12.24%p



Simulation results: 
Effect of vehicle density (2/2)

• The number of vehicles: [10, 20, 30, 40, 50]
– MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)

– Vehicle: Random (# 100 – 1,000)

20

Accuracy

22.48 – 36.61%p

7.58 – 14.79%p



Simulation results: 
Effect of alpha (1/2)

• The variation of alpha (%): [10, 20, 30, 40, 50]
– MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)

– Vehicle: Random (# 100 – 1,000)
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Precision Recall

15.39 – 28.3%p

31.94 – 38.2%p 23.52 – 31.57%p

7.47 – 22.2%p



Simulation results: 
Effect of alpha (2/2)

• The variation of alpha (%): [10, 20, 30, 40, 50]
– MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)

– Vehicle: Random (# 100 – 1,000)
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Accuracy

12.26 – 25.9%p

28.56 – 35.41%p



Conclusion

• We proposed collaborative security attack 
detection mechanism in software-defined 
vehicular networks
– we use multi-class support vector machine (MC-

SVM) to detect various types of attacks

– The simulation results show that the proposed 
mechanism achieves a good performance to detect 
the types of attacks

• High precision, recall, and accuracy

– In our future works, we will extend MC-SVM model 
to minimize the network bandwidth usage 
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MC-SVM: Modeling

• Let, 𝒟 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑖 , 𝑦𝑖 , … , 𝑥𝑛, 𝑦𝑛 ,

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ 𝑅𝐷 , 𝑦𝑖 ∈ 0,1,2, … ,𝑚, 𝑖 = 1,2, … , 𝑛.

• The decision boundary should be classify all points correctly

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, 1 ≤ 𝑖 ≤ 𝑛.

• The decision boundary can be found by solving the following 
constrained optimization problem

min
(𝑤,𝑏)

1

2
𝑤 2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, 1 ≤ 𝑖 ≤ n.
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MC-SVM: Modeling

• The decision boundary should be as far away from the 
data of both as classes possible
– The goal is to maximize the margin, m

28



MC-SVM: Modeling

• Converts to convex optimization problem using slack variable,

min
(𝑤,𝑏)

1

2
𝑤 2 + 𝐶

𝑖=1

𝑛

𝜉𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 , 𝜉𝑖≥ 0, 1 ≤ 𝑖 ≤ n.

• Transforms dual problem using Lagrange multiplier formula,

𝑚𝑎𝑥
𝛼

𝐿 𝛼 =

𝑖=1

𝑛

𝛼𝑖 −
1

2


𝑖=1

𝑛



𝑗=1

𝑛

𝛼𝑖 𝛼𝑗𝑦𝑖𝑦𝑗 𝐾(𝑥𝑖 , 𝑦𝑗)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑖=1

𝑛

𝛼𝑖 𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 1 ≤ 𝑖 ≤ n.

• Transforms 𝑥𝑖 to a higher dimensional space using kernel 
function to consider non-linear case 29



MC-SVM: Modeling

• Kernel function
– Linear kernel function 

• 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑗 , 𝑥𝑖
– Polynomial kernel function with degree 𝑑

• 𝐾 𝑥𝑖 , 𝑥𝑗 = (𝑥𝑖
𝑇𝑥𝑗 + 1)𝑑

– Gaussian radial basis kernel function with 𝜎

• 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝑒𝑥 𝑝 − 𝑥𝑖 − 𝑥𝑗
2
/2𝜎2

– Sigmoid kernel function with 𝑘 and 𝜃

• 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝑡𝑎𝑛ℎ 𝑘𝑥𝑖
𝑇𝑥𝑗 + 𝜃
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MC-SVM: Modeling

• Non-linear SVM
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MC-SVM: Modeling

• Solution (Using Sequential minimal optimization algorithm)

𝛼∗ = 𝛼1
∗, 𝛼2

∗ , … , 𝛼𝑖
∗, … , 𝛼𝑛

∗ 𝑇

• SVM classifier function (i.e., decision function)

𝑏∗ = 

𝑖=1

𝑛

𝛼𝑖
∗𝑦𝑖𝐾(𝑥𝑖 , 𝑦𝑗)

𝑓(𝑥)= 𝑠𝑔𝑛(

𝑖=1

𝑛

𝛼𝑖
∗𝑦𝑖𝐾(𝑥𝑖 , 𝑥 ) + 𝑏∗)

• MC-SVM can be solved by extending the binary-SVM model
– One-versus-all (OVA)

– One-versus-one (OVO)
32



Confusion matrix

• True Positive (TP): Actual: pos. -> Predict: pos.

• True Negative (TN): Actual: neg. -> Predict: neg.

• False Positive (FP): Actual: neg. -> Predict: pos. (Type I error)

• False Negative (FN): Actual: pos. -> Predict: neg. (Type II error)
33
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110
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Confusion matrix

• Precision: Predict: When it predicts pos. -> how often is it correct?
– TP/(TP+FP) = 100/(110) = 0.91

• Recall: Actual: pos. -> how often does it predict pos.?
– TP/(TP+FN)  = 100/(100+5) =0.95  (Recall)

• Accuracy: How often is the classifier correct?
– (TP+TN)/Total  = (100+50)/165 =0.91
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KDD Cup 1999 dataset:
Features
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KDD Cup 1999 dataset:
Features
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KDD Cup 1999 dataset:
Mapping table
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KDD Cup 1999 dataset:
Mapping table
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Simulation results:
Percentage of attack

• Accuracy
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Simulation results:
RoC

• RoC (Receiver Operating Characteristics)
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