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Introduction (1/2)

 The connected cars offer connectivity on wheels
providing comfort and safety

— Such an advanced technology enables the driver to
connect with various online platforms or services

 The global connected car market has the potential to
significantly boost revenues of car manufacturers
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“Machine-to-machine connections and revenue in the automotive sector, 2011-2022"
[source: Machina Research, 2013]



Introduction (2/2)

* In CES 2016, Qualcomm (with Audi) announced a
Snapdragon 820 automotive processor for the
connected cars

— Qualcomm is providing the foundation for the next
generation of infotainment platforms for automotive

— E.g., Snapdragon LTE modem, IEEE 802.11ac, Bluetooth 4.1
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Software-defined Vehicular Cloud

* The resources of vehicles in VANETs are most likely
not utilized (or under-utilized) for vehicular services

— Computing, storage, and communication resource

e Software-defined Vehicular Cloud (SDVC) [1]
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SDVC: Control plane

e Certificate authority (CA)

— Assigns the public key and private key pairs along
with the vehicle’s certificate

e VC Controller

— Collects global information of vehicles
e E.g., vehicle ID, velocity, GPS location, and resource

— Abstracts the vehicle’s resources and maintains
global view of vehicles

— Performs resource distribution (i.e., VC formation)
using V2X communications



SDVC: Data plane

 Vehicle

— Registers local information of vehicles to the VC
controller through the nearest RSU

» Updates local information of vehicle to the VC
controller periodically

— Shares the resource via V2X communication
* Type: Resource requester (RR), resource provider (RP)

* Road side unit (RSU)

— Collects local information of vehicles
— Forwarders information to the VC controller



SDVC: Operation
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* Collaborative security attack detection
mechanism in software-defined
vehicular networks

— Motivation
— Detection of attacks using multi-class SVM



Collaborative security attack detection:
Motivation (1/2)

e Security issues have been investigated in VANETSs
research [2]

* In traditional VANETSs, a public key infrastructure (PKI)
is commonly adopted by IEEE 1609.2 [3]

— A certificate revocation list (CRL) is issued by the
certificate authority (CA) periodically

— There is no standard mechanism proposed for CRL

The PKI can only ensure fundamental security
requirements in VANETSs

— Authentication and message integrity



Collaborative security attack detection:
Motivation (2/2)
 There are a number of attacks in VANETs [4][5]

— Safety applications are very important in nature as these
are directly related to drivers and their lives

— The purpose of attacks is to create problem for drivers, and
as a result services are not accessible

— E.g., Sybil attack, denial of service (DoS) attack

e Attackers are moving and modifying their attack
patterns continuously

( Collaborative security attack detection mechanism

uses multi-class support vector machine (MC-SVM) to detect
g various types of attacks dynamically )
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Collaborative security attack detection:

Overview

e Control plane
— Certificate authority (CA)
* |ssuing the certificate

— VC controller
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Collaborative security attack detection:

Operation

VC Controller

Update

SVM Classifier

T

Multi-class SVM Training

T

Collection of Information

l
P

Training
Data

I I

Flow
Information

Vehicular Cloud (VC)

VANET

13



Detection of attacks using MC-SVM:

Example
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Detection of attacks using MC-SVM:
Modeling

Multi-class SVM features
— Packet drop rate (PDR) —

The Number of Packets Dropped
e« PDR = f pp

The Total Number of Packets Transmitted

— Packet modification rate (PMR) Output

e« PMR = The Number of Packets Modified MC-SVM 4 N\
" The Total Number of Incoming Packets Lea rning

— RTS flooding rate - ‘ The types
of attacks
 |EEE 802.11p RTS packet

— Wireless channel status [0, 1] - J

* Busy status of channel in a specific period of time

— Packet interval, packet size

* Average packet interval and size in the flow
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Simulation results:
Topology

* MC-SVM simulator based on Matlab 2015a
— Dataset: KDD Cup 1999 (by MIT Lincoln Labs) *

* The objective is to survey and evaluate research in IDS
» Attacks: DoS, Probing, R2L, U2R + Normal (# 86,678 dump (10%))

— Comparison scheme
e SVM-Nearest Neighbor, SVM-Individual

— Simulation parameters
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Simulation results:
KDD Cup 1999 dataset features

 KDD Cup 1999 dataset features
— Basic features (1-9) mp [DoS, Probing attack]

* duration, protocol, service, flag, src_byte, dst_byte, land, wrong_fragment, urgen

— Content features (10-28) m)p [R2L, U2L attack]

* count, srv_count, serror_rate, srv_serror_rate, ...
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Simulation results:
Confusion matrix

e Confusion matrix
— Test dataset: # 300

(Predicted) Normal Attack
DoS  Normal Probing R2L U2R (Predicted) (Predicted)

Normal |

(Actual)’ |
Normal 2

Probing 3

Attack 1

(Actual)
R2L 4

U2R5

(Actual)

1 2 3 4 5 i} 1
Confusion Matrix Confusion Matrix
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Simulation results:
Effect of vehicle density (1/2)

e The number of vehicles: [10, 20, 30, 40, 50]
— MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)
— Vehicle: Random (# 100 — 1,000)
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Simulation results:
Effect of vehicle density (2/2)

The number of vehicles: [10, 20, 30, 40, 50]

— MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)
— Vehicle: Random (# 100 — 1,000)

Accuracy

3
-9
-
-
-
-
&

.- 77.58-14.79%p

s 60 =
) -0
oy
& S50F o~
3
Q
< 40 o
22.48 — 36.61%p
305
20
i~ SVM-VC
10 - @~ SVM-Nearest Neighbor ||
SVM-Individual
0 1 1 1
10 20 30 40 50

Number of Vehicles

20



Precision (%)

Simulation results:
Effect of alpha (1/2)

e The variation of alpha (%): [10, 20, 30, 40, 50]
— MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)
— Vehicle: Random (# 100 — 1,000)
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Simulation results:
Effect of alpha (2/2)

e The variation of alpha (%): [10, 20, 30, 40, 50]
— MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)
— Vehicle: Random (# 100 — 1,000)
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Conclusion

* We proposed collaborative security attack
detection mechanism in software-defined
vehicular networks

— we use multi-class support vector machine (MC-
SVM) to detect various types of attacks

— The simulation results show that the proposed
mechanism achieves a good performance to detect
the types of attacks

* High precision, recall, and accuracy

— In our future works, we will extend MC-SVM model
to minimize the network bandwidth usage
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MC-SVM: Modeling

Let, D = {(X1, }’1), (Xz, yZ)i L) (xir yi)r ey (Xn, yn)};
where x; € R?,y; € 0,1,2,...,m,i = 1,2, ..., n.

The decision boundary should be classify all points correctly

yiwlx;+b) =1, 1<i<n.

The decision boundary can be found by solving the following
constrained optimization problem

- 2
min -
min > |w]|

subject to y;(wlx;+b)>1, 1<i<n.



MC-SVM: Modeling

* The decision boundary should be as far away from the
data of both as classes possible

— The goal is to maximize the margin, m

X,

@ ® e . ) wix+h =1

wix+bh=0

wix+bh=-1

+ _I:I['_l 28



MC-SVM: Modeling

* Converts to convex optimization problem using slack variable,
1 2 4 ¢
min > w2 + _Zlfi
1=

subject to y;(wlx;+b)=1-¢&;, §=0,1<i<n.
* Transforms dual problem using Lagrange multiplier formula,

n 1 n n
max L(Gf =Z(xl Ezzal 0(]}/1)/] K(xliy])

=1 i=1j
n
subject toZaiyi=0, 0<a <(C1<i<n
i=1
* Transforms x; to a higher dimensional space using kernel
function to consider non-linear case



MC-SVM: Modeling

e Kernel function
— Linear kernel function

* K(xi, %) = (%7,
— Polynomial kernel function with degree d

* K(x;,x7) = () x; + 1)

— Gaussian radial basis kernel function with o
* K(x;,x;) = exp (—||xl- — xj||2/202)

— Sigmoid kernel function with k and 6
. K(xl-,xj) = tanh(kxiij + 9)



MC-SVM: Modeling

e Non-linear SVM

¢ o .
1'.!;"*1'{1';;] . .
O ® o
O
O O ¢ (x)
O ®
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MC-SVM: Modeling

e Solution (Using Sequential minimal optimization algorithm)

*

* * * *\T
a* = (aj,az, .., a;,...,an)

* SVM classifier function (i.e., decision function)

n

b* = Z a;yiK(x;,y;)

=1

F() = sgn()_ aiyiK (@, x)+b")
i=1

* MC-SVM can be solved by extending the binary-SVM model
— One-versus-all (OVA)
— One-versus-one (OVO)



Confusion matrix

Actual Actual
N=165 | Positive(+) Negative(-)
Predict TP FP
Positive(+) 100 10 110
Predict FN TN
Negative(-) 5 50 55
105 60

True Positive (TP): Actual: pos. -> Predict: pos.

True Negative (TN): Actual: neg. -> Predict: neg.

False Positive (FP): Actual: neg. -> Predict: pos. (Type | error)
False Negative (FN): Actual: pos. -> Predict: neg. (Type Il error)
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Confusion matrix

Actual Actual
N=165 | Positive(+) Negative(-)
Predict TP FP
Positive(+) 100 10 110
Predict FN TN
Negative(-) 5 50 55
105 60

* Precision: Predict: When it predicts pos. -> how often is it correct?
— TP/(TP+FP) = 100/(110) = 0.91

e Recall: Actual: pos. -> how often does it predict pos.?
— TP/(TP+FN) =100/(100+5) =0.95 (Recall)

e Accuracy: How often is the classifier correct?
— (TP+TN)/Total = (100+50)/165 =0.91



KDD Cup 1999 dataset:
Features
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Content

KDD Cup 1999 dataset:

Features
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KDD Cup 1999 dataset:
Mapping table

Hol 9 Fe~ Hel 9§ T
Denial of Service (DoS) Smurf, Land, Pod, Teardrop, Neptune, Back
Probing Ipsweep, Nmap, Portsweep, Satan
User to Root (U2R) Perl, Buffer_overflow, Rootkit, Loadmodule

Gess_pass, Imap, Multithop, Ftp_write, Phf,
Remote to Local (R2L)

Spy, Warezmaster, Wareclient

N e SR F
1 Normal 78,010
2 Denial of Service (DoS) 3,712
3 Probing 3,796
4 User to Root (UZR) 35
5} Remote to Local (R2L) 1,125
3 86,678
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KDD Cup 1999 dataset:
Mapping table

Trained Dataset

Normal

38% = Normal
. = DoS
Probing
23% Probing
s UZR
s R2L

DoS
25%

a9 12. 714 g A™S A7 s diolHAl 74
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Simulation results:

Percentage of attack

* Accuracy
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Simulation results:
RoC

* RoC (Receiver Operating Characteristics)

ROC

True Pasitive Rate
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