Collaborative Security Attack Detection in Software-Defined Vehicular Networks

APNOMS 2017

Myeongsu Kim, Insun Jang, **Sukjin Choo**, Jungwoo Koo, and Sangheon Pack Korea University 2017. 9. 27.

Contents

- Introduction
 - Software-defined Vehicular Cloud (SDVC)
- Collaborative security attack detection mechanism in software-defined vehicular networks
 - Motivation
 - Detection of attacks using multi-class SVM
- Simulation results
- Conclusion
- Reference

Introduction (1/2)

- The connected cars offer connectivity on wheels providing comfort and safety
 - Such an advanced technology enables the driver to connect with various online platforms or services
- The global connected car market has the potential to significantly boost revenues of car manufacturers

"Machine-to-machine connections and revenue in the automotive sector, 2011-2022" [source: Machina Research, 2013]

Introduction (2/2)

- In CES 2016, Qualcomm (with Audi) announced a Snapdragon 820 automotive processor for the connected cars
 - Qualcomm is providing the foundation for the next generation of infotainment platforms for automotive
 - E.g., Snapdragon LTE modem, IEEE 802.11ac, Bluetooth 4.1

[source: www.globalwindow.org, www.androidheadlines.com]

Software-defined Vehicular Cloud

- The resources of vehicles in VANETs are most likely not utilized (or under-utilized) for vehicular services
 - Computing, storage, and communication resource
- Software-defined Vehicular Cloud (SDVC) [1]

SDVC: Control plane

- Certificate authority (CA)
 - Assigns the public key and private key pairs along with the vehicle's certificate
- VC Controller
 - Collects global information of vehicles
 - E.g., vehicle ID, velocity, GPS location, and resource
 - Abstracts the vehicle's resources and maintains global view of vehicles
 - Performs resource distribution (i.e., VC formation) using V2X communications

SDVC: Data plane

- Vehicle
 - Registers local information of vehicles to the VC controller through the nearest RSU
 - Updates local information of vehicle to the VC controller periodically
 - Shares the resource via V2X communication
 - Type: Resource requester (RR), resource provider (RP)
- Road side unit (RSU)
 - Collects local information of vehicles
 - Forwarders information to the VC controller

SDVC: Operation

- Collaborative security attack detection mechanism in software-defined vehicular networks
 - Motivation
 - Detection of attacks using multi-class SVM

Collaborative security attack detection: Motivation (1/2)

- Security issues have been investigated in VANETs research [2]
- In traditional VANETs, a public key infrastructure (PKI) is commonly adopted by IEEE 1609.2 [3]
 - A certificate revocation list (CRL) is issued by the certificate authority (CA) periodically
 - There is no standard mechanism proposed for CRL
- The PKI can only ensure fundamental security requirements in VANETs
 - Authentication and message integrity

Collaborative security attack detection: Motivation (2/2)

- There are a number of attacks in VANETs [4][5]
 - Safety applications are very important in nature as these are directly related to drivers and their lives
 - The purpose of attacks is to create problem for drivers, and as a result services are not accessible
 - E.g., Sybil attack, denial of service (DoS) attack
- Attackers are moving and modifying their attack patterns continuously

Collaborative security attack detection mechanism uses multi-class support vector machine (MC-SVM) to detect various types of attacks dynamically

Collaborative security attack detection: Overview

- Control plane
 - Certificate authority (CA)
 - Issuing the certificate
 - VC controller
 - Information collection
 - VC formation
 - Generating pseudonym
 - Conducting multi-class SVM
- Data plane
 - Road segment unit (RSU)
 - Vehicle

Collaborative security attack detection: Operation

Vehicular Cloud (VC)

Detection of attacks using MC-SVM: Example

Detection of attacks using MC-SVM: Modeling

- Multi-class SVM features
 - Packet drop rate (PDR)
 - $PDR = \frac{The Number of Packets Dropped}{The Total Number of Packets Transmitted}$
 - Packet modification rate (PMR)
 - $PMR = \frac{The Number of Packets Modified}{The Total Number of Incoming Packets}$
 - RTS flooding rate
 - IEEE 802.11p RTS packet
 - Wireless channel status [0, 1]
 - Busy status of channel in a specific period of time
 - Packet interval, packet size
 - Average packet interval and size in the flow

Simulation results: Topology

- MC-SVM simulator based on Matlab 2015a
 - Dataset: KDD Cup 1999 (by MIT Lincoln Labs) *
 - The objective is to survey and evaluate research in IDS
 - Attacks: DoS, Probing, R2L, U2R + Normal (# 86,678 dump (10%))
 - Comparison scheme
 - SVM-Nearest Neighbor, SVM-Individual
 - Simulation parameters

Parameter	Value]	16 14 14 14
Simulation area	1,600 $m \times$ 1,600 m	Random	12
The number of RSUs	16	Generation	() () () () () () () () () () () () () (
Transmission range of RSU	300 m		
The number of vehicles	10, 20, 30, 40, 50		*
Transmission range of vehicle	130 m]	

[*] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

nicular Ad Hoc Networks Topology

Simulation results: KDD Cup 1999 dataset features

KDD Cup 1999 dataset features

- Basic features (1-9)
 [DoS, Probing attack]
 - duration, protocol, service, flag, src_byte, dst_byte, land, wrong_fragment, urgen
- Content features (10-28)
 [R2L, U2L attack]
 - count, srv_count, serror_rate, srv_serror_rate, ...

MC-SVM kernel function

Simulation results: Confusion matrix

Confusion matrix

Test dataset: # 300

Simulation results: Effect of vehicle density (1/2)

- The number of vehicles: [10, 20, 30, 40, 50]
 - MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)
 - Vehicle: Random (# 100 1,000)

Simulation results: Effect of vehicle density (2/2)

- The number of vehicles: [10, 20, 30, 40, 50]
 - MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)
 - Vehicle: Random (# 100 1,000)

Simulation results: Effect of alpha (1/2)

- The variation of alpha (%): [10, 20, 30, 40, 50]
 - MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)
 - Vehicle: Random (# 100 1,000)

Simulation results: Effect of alpha (2/2)

- The variation of alpha (%): [10, 20, 30, 40, 50]
 - MC-SVM dataset: #30,000 (Learning), # 20,000 (Test)
 - Vehicle: Random (# 100 1,000)

Conclusion

- We proposed collaborative security attack detection mechanism in software-defined vehicular networks
 - we use multi-class support vector machine (MC-SVM) to detect various types of attacks
 - The simulation results show that the proposed mechanism achieves a good performance to detect the types of attacks
 - High precision, recall, and accuracy
 - In our future works, we will extend MC-SVM model to minimize the network bandwidth usage

Reference

[1] S. Choo, I. Jang, M. Kim, and S. Pack, "The Software-Defined Vehicular Cloud: A New Level of Sharing the Road," *IEEE Vehicular Technology Magazine (VTM)*, vol. 12, no.2, pp. 78-88, June 2017.

[2] F. Qu, Z. Wu, F. -Y. Wang, and W. Cho, "A Security and Privacy Review of VANETs," *IEEE Transactions On Intelligent Transportation Systems*, vol. 16, no. 6, pp. 2985-2996, Dec. 2015.

[3] N. Tiwari, "On the Security of Pairing-free Certificateless Digital Signature Schemes Using ECC," *ICT Express*, vol. 1, no. 2, pp. 94-95, Sept. 2015.

[4] M. Azees, P. Vijayakumar, and L. J. Deborah, "Comprehensive Survey of Security Service in Vehicular Ad-hoc Networks," *IET Intelligent Transport Systems*, vol. 10, no. 6, pp. 379-388, Aug. 2016.

[5] L. Barish, D. Shehada, E. Salahat, and C. Y. Yeun, "Recent Advances in VANET Security: A Survey," in *Proc. IEEE Vehicular Technology Conference (VTC) Fall*, 2015.

 [6] W. Li, A. Joshi, and T. Finin, "SVM-CASE: An SVM-based Context Aware Security Framework for Vehicular Ad-hoc Networks," in *Proc. IEEE VTC Fall*, Sept. 2015. Q & A

Backup

- Let, $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_i, y_i), \dots, (x_n, y_n)\},\$ where $x_i \in \mathbb{R}^D, y_i \in 0, 1, 2, \dots, m, i = 1, 2, \dots, n.$
- The decision boundary should be classify all points correctly

 $y_i(w^T x_i + b) \ge 1, \quad 1 \le i \le n.$

• The decision boundary can be found by solving the following constrained optimization problem

 $\min_{(w,b)} \frac{1}{2} \|w\|^2$

subject to $y_i(w^T x_i + b) \ge 1$, $1 \le i \le n$.

- The decision boundary should be as far away from the data of both as classes possible
 - The goal is to maximize the margin, m

• Converts to convex optimization problem using slack variable, $\min_{(w,b)} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$

subject to $y_i(w^T x_i + b) \ge 1 - \xi_i$, $\xi_i \ge 0, 1 \le i \le n$.

• Transforms dual problem using Lagrange multiplier formula,

$$\max_{(\alpha)} L(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, y_{j})$$

subject to
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
, $0 \le \alpha_i \le C, 1 \le i \le n$.

• Transforms x_i to a higher dimensional space using *kernel* function to consider non-linear case

- Kernel function
 - Linear kernel function
 - $K(x_i, x_j) = (x_j, x_i)$
 - Polynomial kernel function with degree d
 - $K(x_i, x_j) = (x_i^T x_j + 1)^d$
 - Gaussian radial basis kernel function with σ
 - $K(x_i, x_j) = ex p(-||x_i x_j||^2/2\sigma^2)$

– Sigmoid kernel function with k and θ

•
$$K(x_i, x_j) = tanh(kx_i^T x_j + \theta)$$

• Non-linear SVM

• Solution (Using Sequential minimal optimization algorithm)

$$\alpha^* = (\alpha_1^*, \alpha_2^*, \dots, \alpha_i^*, \dots, \alpha_n^*)^T$$

• SVM classifier function (i.e., decision function)

$$b^* = \sum_{i=1}^n \alpha_i^* y_i K(x_i, y_j)$$

$$F(x) = sgn(\sum_{i=1}^n \alpha_i^* y_i K(x_i, x_i) + b^*)$$

- MC-SVM can be solved by extending the binary-SVM model
 - One-versus-all (OVA)
 - One-versus-one (OVO)

Confusion matrix

N=165	Actual Positive(+)	Actual Negative(-)	
Predict	TP	FP	110
Positive(+)	100	10	
Predict	FN	TN	55
Negative(-)	5	50	
	105	60	

- True Positive (TP): Actual: pos. -> Predict: pos.
- True Negative (TN): Actual: neg. -> Predict: neg.
- False Positive (FP): Actual: neg. -> Predict: pos. (Type I error)
- False Negative (FN): Actual: pos. -> Predict: neg. (Type II error)

Confusion matrix

N=165	Actual Positive(+)	Actual Negative(-)	
Predict	TP	FP	110
Positive(+)	100	10	
Predict	FN	TN	55
Negative(-)	5	50	
	105	60	

- Precision: Predict: When it predicts pos. -> how often is it correct?
 - TP/(TP+FP) = 100/(110) = 0.91
- Recall: Actual: pos. -> how often does it predict pos.?
 - TP/(TP+FN) = 100/(100+5) =0.95 (Recall)
- Accuracy: How often is the classifier correct?
 - (TP+TN)/Total = (100+50)/165 =0.91

KDD Cup 1999 dataset: Features

		데이터셋 속성	설명
	1	Duration	연결 지속 시간
	2	Protocol-type	프로토콜 종류 (예: TCP, UDP 등)
	3	Service	서비스 종류 (예: HTTP, Telnet 등)
	4	Flag	정상 또는 에러를 나타내는 플래그
	5	Src_byte	출발지로부터의 데이터 크기
	6	Dst_byte	목적지로부터의 데이터 크기
Pacic	7	Land	출발지와 목적지의 주소가 같으면 1, 다르면 0
Dasic	8	Wrong_fragment	프래그먼트 (fragment)오류의 개수
	9	Urgen	Urgent 패킷의 개수
L	10	Count	두 호스트 간 2초 이상 현겁을 지속한 집속 수
e	11	Srv_count	두 호스트 간 한 서비스로 2초 이상 연결을 지속한 접 속 수
Content	12	Serror_rate	SYN 에러율
	13	Srv_serror_rate	서비스 SYN 에러율
	14	Rerror_rate	REJ 에러율
	15	Srv_rerror_rate	서비스 REJ 에러율
	16	Same_srv_rate	접속중 같은 서비스 요청율
	17	Diff_srv_rate	접속중 다른 서비스 요청율
	18	Srv_diff_host_rat e	다른 호스트 접속율
	19	Dst_host_count	목적지 호스트 개수
	20	Dst_host_srv_cou nt	목적지 호스트 서비스 개수

35

KDD Cup 1999 dataset: Features

1			
	21	Dst_host_same_sr	목적지 호스트상 같은 서비스 비율
t	22	Dst_host_diff_srv _rate	목적지 호스트상 다른 서비스 비율
	23	Dst_host_same_sr v_port_rate	목적지 호스트상 같은 소스 포트 비율
	24	Dst_host_diff_srv _host_rate	목적지 호스트상 다른 호스트율
	25	Dst_host_serror_r ate	목적지 호스트 SYN 에러율
	26	Dst_host_rerror_r ate	목적지 호스트 서비스 SYN 에러율
	27	Dst_host_srv_rerr or_rate	목적지 호스트 REJ 에러율
	28	Dst_host_srv_rerr or_rate	목적지 호스트 서비스 REJ 에러율

Content

KDD Cup 1999 dataset: Mapping table

보안 위협 클래스	보안 위협 종류	
Denial of Service (DoS)	Smurf, Land, Pod, Teardrop, Neptune, Back	
Probing	Ipsweep, Nmap, Portsweep, Satan	
User to Root (U2R)	Perl, Buffer_overflow, Rootkit, Loadmodule	
Demote to Legal (D2L)	Gess_pass, Imap, Multihop, Ftp_write, Phf,	
Remote to Local (R2L)	Spy, Warezmaster, Wareclient	

	보안 위협 유형	플로우 수
1	Normal	78,010
2	Denial of Service (DoS)	3,712
3	Probing	3,796
4	User to Root (U2R)	35
5	Remote to Local (R2L)	1,125
	하나	86,678

KDD Cup 1999 dataset: Mapping table

그림 12. 커널 함수 선택을 위한 학습 데이터셋 구성

Simulation results: Percentage of attack

Accuracy

Simulation results: RoC

• RoC (Receiver Operating Characteristics)

