

Identification of User Behavior from Flow Statistics

APNOMS 2017, September 2017

Shingo Ata

Graduate School of Engineering Osaka City University

Coloring traffic and control

Internet applications are diversified

Web browsing, file downloading, multimedia delivery, social networking services, cloud services

Application-based traffic management is a key

- To achieve QoE (Quality of Experience) to end users
- To realize efficient management of networking resources

Problem statement

Limitation of single flow identification

- Recent applications use multiple flows (e.g., TCP connection)
 - Simultaneously in parallel
 - To improve the users' experience (e.g., latency, throughput, and response time)
- Identification of single flow is insufficient

Problem statement (cont'd)

Video is not always important

Importance of content depends on user's behavior
 Web portal, timelines on social networking
 Multiple content types in a single page

Introduction of "User Behavior"

Importance of flows are strongly related to real actions taken by users

- Controlling the most important flow for the user can directly improve the user's overall QoE
- User behavior

Detailed actions taken in the application (or service)

- Identification of user behavior
 - From statistics of multiple flows
 - Not focus on an individual flow but focus on multiple flows associated to application
- Extend application identification method to handle statistical relations among flows
 - Use functions to represent the relation of multiple flows
 - Use ML (Machine Learning) based algorithm for identification

Target behaviors (9 apps, 43 behaviors)

Application	URL	User behaviors			
Youtube	www.youtube.com	Playing video, Search video, My channel, Authorization (login), Top page			
Google	www.google.com	Top page, Search result, Image search result			
Yahoo! Japan	www.yahoo.co.jp	Top page, Search, News (text only), News (with video)			
Amazon	www.amazon.com	Top page, Login, Product search, Product details, View shopping carts			
Facebook	www.facebook.com	Login, Timeline, Post (text), Post (with pictures), Profile			
Gmail	www.gmail.com	Inbox, Send/Receive mails, Open mail			
Skype	www.skype.com	Waiting, Calling, Video conference, Short message, File exchange			
Dropbox	www.dropbox.com	Application initialization, Syncing, Upload, Delete, Name change, Folder creation			
Twitter	www.twitter.com	Timeline, Posting tweets, Posting images, Top page			

Measurement environment

Behavior scenarios

Create a set of operations in every application/service

Packet capture and flow analysis

Basic process of application identification

- Traffic is classified into flows (e.g., w/ 5-tuples).
- A set of traffic features is obtained for each flow.
 Each flow has a multidimensional vector (f1, f2, ..., fm).
- Supervised ML algorithm is applied to identify the application.
 - Training data is used as supervisor.

Traffic features used

Packets -> flows

Classified by 5-tuples

Calculate traffic features for every flow (48 features in evaluation)

Category	Direction	Traffic Features	
Packet size	C->S, S->C, both	Min, Max, Med, Avg, Dev, 25%, 75%	
Packet inter-arrival Time	C->S, S->C, both	Min, Max, Med, Avg, Dev, 25%, 75%	
Avg. packet size in time window	C->S, S->C, both	win=10sec	
# packets	C->S, S->C, both	Total	
Transmission speed	S->C	bps	
# bytes	C->S, S->C, both	Total	
# active flows	S->C	Total	
Duration	both	Total	

Preliminary example: # flows

Main observations

- # of active flows is significantly varied at the event of user behavior
 - Up to 70 in web portal
- Video sharing is less sensitive than web portal

■ By SPDY and HTTP/2

Preliminary example: Max pkt size

- Distribution of max packet size in flows
 - Widely distributed in web portal
 - Different contents from different sites
 - Almost two clusters in social network
 - By SPDY or HTTP/2.0
 - Reuse connections for different contents

Preliminary example: transfer rate

- Different results between video and text or image
 - Video: constant and long
 - Text/image: varied and short

Outline of user behavior identification

Behavior features

Calculation of behavior features

- Application generates n flows for single behavior
 Calculate traffic feature Vector G for every flow
- Group by traffic features $G = \{f_1, f_2, ..., f_k\}$

 $\Box Calc = lat e^{i} b e^{i} a t i or f e^{i} t ur e^{i} k$ k-th traffic feature for flow w_n

 $b_k^j = R^j(F_k)$ R^j: function to get j-th behavior feature from F_k

Functions for behavior features

14 functions

Average	Median Absolute Deviation		
Standard Deviation	Variance Mean Ratio		
Skewness	Geometric Mean		
Kurtosis	Harmonic Mean		
Bimodal Coefficient	Range		
Coefficient of Variation	Trimmed Mean		
Median	Interquartile Range		

Implementation and evaluation

9 applications (43 behaviors) for identification
 1/3 of measured flows are used for training
 2/3 of flows are used for evaluations

Machine learning algorithm
 48 x 14 = 672 features vector
 SVM (support vector machine)

Evaluation metric

Accuracy = (# of correctly identified behaviors) / (total # of behaviors)

Identification results

Application
 identification
 Overall = 91%

Behavior
 identification
 Overall = 81%

Арр	Behavior	Accuracy (%)	Арр	Behavior	Accuracy (%)
Amazon (96%)	Buy	91	Gmail (90%)	Open	88
	Cart	80		Тор	98
	Goods	91		Send	97
	Login	97	Google (92%)	ImgSearch	87
	Search	81		Search	55
	Тор	92		Тор	72
	Start	93	Skype (92%)	Login	98
	Upload	90		Msg	98
	Sync	73		File	83
Dropbox (92%)	Name	41		Video	64
(3278)	Folder	34		Voice	97
	Move	45	Twitter (84%)	Login	97
	Delete	33		Tweet	80
Face book (93%)	Load	82		Load	88
	Login	98		Image	81
	Image	82			
	Post	74			
	Profile	84			
	Тор	98			

Impact to reduce # of features

672 features require huge computation
 # of features should be as few as possible

By applying SVM-RFE # of feature can be reduced 143

Summary and future works

Identification of user behavior

- Not to identify individual flows but identify real actions in application
- Introduction of behavior features
- Achieve over 80% of behavior identification

Future topics

- Increase applications and behaviors
- Analyze impacts of contents or individual users