

Design of Optical Aggregation Network with Carrier Edge Functions Virtualization

September 28, 2017 APNOMS2017@Seoul

Takashi Miyamura¹, Akira Misawa², Jun-ichi Kani¹

¹ NTT Laboratories

² Chitose Institute of Science and Technology (CIST)

Copyright©2017 NTT corp. All Rights Reserved.

- 1. Background
- 2. Objective
- 3. Proposed Method
- 4. Performance Evaluation
- 5. Conclude

- 1. Background
- 2. Objective
- 3. Proposed Method
- 4. Performance Evaluation
- 5. Conclude

Carrier network architecture

XOLT: Optical Line Terronnet, OXC: Optical Cross-connect

Copyright©2017 NTT corp. All Rights Reserved.

Recent trend in aggregation networks

- ①: Introducing NFV for Carrier Edge functions
 - Edge functions to be relocated from edge routers to distributed pools of commodity servers
- 2: TDM/WDM-based Optical Aggregation Network
 - WDM ring network to accommodate large-volume traffic efficiently

① Carrier edge functions virtualization

- Advantages:
 - Create VNF for each OLT. The VNF can be flexibly placed on any servers among distributed pools of commodity servers.
 - Can be live-migrated from an over-loaded server to an underutilized one in response to unpredictable traffic changes.
- Challenges:
 - Determine VNF placement considering traffic demand and geographical location (e.g. distance bet. OLT-Server).

Edge routers (dedicated hardware)

VNF (virtual network function): Implementation as software

Commodity servers

② TDM/WDM-based aggregations network

- Advantages:
 - To cope with bursty traffic, enable the same wavelength channel to be shared by multiple OLTs through DBA or other TDM technologies.
- Challenges:
 - How to efficiently select route for P2MP wavelength path considering bandwidth requirement of each QLT?

[1] K. Hattori et al., IEICE Trans. Electron., Vol. E99-C, No. 2, pp. 189-201, **Opyright**©2017 NTT corp. All Rights Reserved. 7

- 1. Background
- 2. Objective
- 3. Proposed Method
- 4. Performance Evaluation
- 5. Conclude

Issues in carrier edge virtualization

Objective

- Minimize network cost while efficiently utilizing server resources.
 - For optimal VNF placement, we need to consider resource requirements of optical network in addition to server resources
 - In optical aggregation network, we need to consider the sharing of wavelength paths as we can use P2MP paths connecting server and OLTs

- 1. Background
- 2. Objective
- 3. Proposed Method
- 4. Performance Evaluation
- 5. Conclude

Proposed design method

We formulate the design problem as mixed integer linear programming (MILP).

•Objective function:

- Minimize weighted sum of network cost and max server load
 Variables:
- P2MP wavelength paths between server and OLTs
- VNF placement (Select ES to be accommodated)

Network model

Innovative R&D by NT

Overview of MILP formulations

- VNF placement
 - Assign binary variables to candidate ES for VNF placement
- Route for P2MP wavelength path
 - Configure logical flow bet. $VNF \sim OLT$.
 - Find route for P2MP path minimize network cost while

accommodating traffic demand of logical flows. VNF placement

Copyright©2017 NTT corp. All Rights Reserved.

- 1. Background
- 2. Objective
- 3. Proposed Method
- 4. Performance Evaluation
- 5. Conclude

- (1): Design of parameter α
 - Parameter α governs the weight of network cost on server load
- 2: Effectiveness
 - Effectiveness regarding reduction in network cost and server load
 -): Robustness against unpredictable traffic

changes

Evabuater impage increased variations of traffic demand

Evaluation conditions

- Topology : 10-node multi-ring
- Traffic demand : Zipf distribution $T(x) = b x^{-\beta}$
- Reference method : MinHop, RoundRobin

• To configure parameter α around $0 \sim 1$, we can efficiently disperse server load while avoiding increase in network cost.

Result 2-1: Effectiveness

- Innovative R&D by NTT
- Compare network cost for various traffic demand
- Proposed method reduced by up to 21%

Result 2-2 Effectiveness

- Compare max server load for various traffic demand
- Proposed method reduced by up to 30%

Result ③ Robustness

- Evaluate robustness for various traffic variations β **Zipf distribution T(x)=b*x^{-\beta}**
- Proposed method ensures robustness against traffic variations

Traffic=50

- 1. Background
- 2. Objective
- 3. Proposed Method
- 4. Performance Evaluation
- 5. Conclude

Conclusions

- We studied the optimal design of optical aggregation networks with carrier edge function virtualization.
 - NFV improves efficiency of server resources for carrier edge functions.
 - Consider joint optimization problem that minimizes network cost and maximum server load.
 - Formulate the problem as mixed integer linear programming.
- We quantitatively evaluated effectiveness of the optimal aggregation network design with VNF placement.
 - It reduced the maximum server load and network cost by up to 30% and 21%, respectively.
- NTT Can improve resource efficiency and robustness to unpredictable demand changes. 23

Thank you for your kind attention.

Copyright©2017 NTT corp. All Rights Reserved. 24