Layered Video Communication in ICN Enabled Cellular Network with D2D Communication

Saeed Ullah, Tuan LeAnh, Anselme Ndikumana, Md. Golam Rabiul Alam, and Choong Seon Hong

Kyung Hee University, South Korea

APNOMS 2017

Present by : Saeed Ullah (사이드 울라) Date : Sep. 29, 2017

Outline

- Introduction
- Background
- System Architecture
- Communication Scenario
- Problem Formulation
- Resource Allocation
- Performance Evaluation
- Conclusion

- Wireless part of the network is always considered as the bottle neck
- Demand of the bandwidth thirsty applications is increasing more rapidly than the growth of the wireless network capacity
- Modern UEs encouraging us to use it for sophisticated applications i.e., D2D communication
 - Larger memory
 - Equipped with ability of powerful processing
- ICN/CCN, a future Internet architecture, enables all the networking devices to play more important role

- In this paper, we propose to provide the requested video to users from other users cache, using D2D link
- Our objective is to reduce the download delay for the users' requested video
- We formulate the problem as a matching game in which the resources are assigned to the users in the uplink period

CCN is a new internet structure that changes current IP structure as:

"What" instead of "where"

- Users send interest packet and CCN nodes sends back data chunk either from its local content store or request it from content provider
- CCN nodes store a copy of the data chunk that passes through
- Cache is one of the most important resource of a

Background: Scalability in Video Streaming

6/12

System Architecture

(b)

UEs

Communication Scenario

Problem Formulation

• For RB allocation we use binary variable x_{mn}^k :

$$x_{mn}^{k} = \begin{cases} 1, & \text{If D2D pair in group } g \text{ is assigned RB } k \\ 0, & \text{otherwise.} \end{cases}$$

• D2D transmission rate of a UE

$$R_{nm}^{k}(\mathbf{X}, \mathbf{P}) = W^{k} \log \left(1 + \frac{h_{nm}^{k} P_{nm}^{k}}{\sum\limits_{\substack{n' \neq n, \\ m' \neq m}} x_{n'm'}^{k} h_{n'm}^{k} P_{n'm'}^{k} + \sigma^{2}} \right)$$

Problem Formulation Cont'd ...

• Total transmission rate

$$R_n(\mathbf{X}, \mathbf{P}) = \sum_{m,k} W^k x_{nm}^k R_{nm}^k(\mathbf{X}, \mathbf{P})$$

• Delay Analysis

$$D_n(\mathbf{X}, \mathbf{P}) = \frac{b_{i,l}^m}{2R_n(m, k) \left(R_n(m, k) - b_{i,l}^m\right)}$$

Problem Formulation Cont'd ...

OPT-1:

minimize_x
$$\sum_{n \in \mathcal{N}} D_n,$$

subject to:
$$R_m(\mathbf{X}, \mathbf{P}) \ge R_{m,\min},$$
$$P_{nm}^k \in P_n = \{0, P_{n,\max}\}; \ \forall m, n,$$
$$x_{nm}^k = \{0, 1\}, \ \forall m, n, k,$$
$$\sum_{k \in \mathcal{K}} x_{mn}^k \le 1, \ \forall m, n,$$
$$\sum_{k \in \mathcal{N}} x_{mn} \le 1, \ \forall m, n,$$
$$\sum_{n \in \mathcal{N}} x_{mn} \le 1, \ \forall m,$$
$$\sum_{m \in \mathcal{M}} x_{mn} \le 1, \ \forall m.$$

k,

Resource Allocation Algorithm

Algorithm 1 Resource Allocation to cellular and D2D users

- 1: Initialize: N_x^{req} , $N_x^{accepted}$, $N_x^{rejected}$
- 2: Stage I: Discovery and utility computation
- 3: UE sends request to BS to get content.
- 4: BS searches the requested content in VC and find M
- 5: BS broadcasts its sub-channels and M to requesting UEs
- 6: Requesting UEs compute its utility values and build based on (3)
- 7: Stage II: Matching operation to find stable matching
- 8: Each UE n sends a request for network resource x (m, k)to BS, $x = \arg \min(D_n(x))$
- 9: Base station do:
- 10: Updates set of requested UEs N_x^{req}
- 11: Computes utility values and build \succ_x based on (6).
- 12: Update accepted list following (6):
- 13: if n satisfy (6) then
- 14: $N_x^{accepted} \leftarrow = \arg \min(D_n(x))$ using the Hungarian matching algorithm
- 15: else
- 16: $N_x^{accepted} \leftarrow n$
- 17: end if
- 18: BS informs $N_x^{rejected}$. This $N_x^{rejected}$ will be considered in the next uplink transmission period.
- 19: Go back to step 2
- 20: Outputs: α^* and Stable matching μ^* [6]

Performance Evaluation

13/12

• Download delay for different number of UEs

• Download delay for different number of RBs

Performance Evaluation Cont'd ...

• Download delay for different number of content nodes

Conclusions

- In this paper, we present resource allocation to the CU and D2D pair in the uplink transmission period
- UEs with memory can provide other users requested content, via D2D link
- We proposed matching game based approach to solve the resource allocation problem
- Objective of the resource allocation is to reduce the download delay of the requesting UEs

Thank You !!!

