Performance Measurements of 360° Video Streaming to Head-Mounted Displays Over Live 4G Cellular Networks

Department of Computer Science National Tsing Hua University Hsin-Chu, Taiwan

Introduction

 Using conventional displays to watch broadcast live events ⇒ passive experience

360 videos provide immersive experience

360° video in HMD view

360° video in equirectangular projection

Mobile VR

- Mobile HMDs
 - Samsung Gear VR, Carl Zeiss VR One Plus, Google Cardboard, even our smartphone
- Experience VR anywhere
 - YouTube, Facebook, Discovery, vTime

Streaming 360° Videos

- 4k resolution in HMD requires 12k resolution for the whole 360° videos (≈ 135 Mbps in HEVC
 - extremely large file size ⇒ insufficient bandwidth

Images source: 360Heros

Opportunities and Solution Approaches

- The HMD viewer only gets to see a small part of the whole 360° video (< 1/3)
- The viewer actively changes the viewing orientation when rotating his/her head.

- 360° video is split into tiles of sub-videos (spatial) and independently encoded
 - Only the tiles overlapped with the viewer's FoV are streamed to the client

- Tiles are split into temporal segments
 - tiles and qualities can change in every segments

Low-quality

High-quality

- Tiles are split into temporal segments
 - tiles and qualities can change in every segments

- Tiles are split into temporal segments
 - tiles and qualities can change in every segments

- Tiles are split into temporal segments
 - tiles and qualities can change in every segments

- Tiles are split into temporal segments
 - tiles and qualities can change in every segments

- Tiles are split into temporal segments
 - tiles and qualities can change in every segments

- Tiles are split into temporal segments
 - tiles and qualities can change in every segments

Before Streaming 360° Videos over 4G Networks

- Tiling with MPEG DASH -> reduce bandwidth
- Questions to answer
 - How tile size affects the streaming system performance?
 - How much bandwidth saving can we get by selectively requesting useful tiles?
 - How many users can be supported in one 4G cell?

Contributions

- We design and implement an end-to-end 360° video streaming system to Head Mounted Displays
- We evaluate our system's performance over a real 4G cellular network to answer the three questions
- We collect and share (upon request) the dataset collected with our system

• 360° Video Server

- 360° Video Server
 - HEVC^[1] encoder
 - MPEG DASH^[2] content generator

[1] G. Sullivan et al. "Overview of the high efficiency video coding (HEVC) standard." Sullivan, Gary J., et al. "Overview of the high efficiency video coding (HEVC) standard." *IEEE Transactions on circuits and systems for video technology* 22 (12), 2012, 1649-1668.
[2] ISO/IEC DIS 23009-1.2 Dynamic adaptive streaming over HTTP (DASH)

19

• Split the videos into tiles of sub-videos

- Split the videos into tiles of sub-videos
- Encode the tiles using motion-constrained HEVC encoder with different bitrates (qualities)

- Split the videos into tiles of sub-videos
- Encode the tiles using **motion-constrained** HEVC encoder with different bitrates (qualities)
 - constrain the tiles encoding so that each tile only refers to the same tiles in previous or future frames -> avoid decoding glitches

- Split the videos into tiles of sub-videos
- Encode the tiles using motion-constrained HEVC encoder with different bitrates (qualities)
 - constrain the tiles encoding so that each tile only refers to the same tiles in previous or future frames -> avoid decoding glitches
 - adapt to network condition

- Split the videos into tiles of sub-videos
- Encode the tiles using motion-constrained HEVC encoder with different bitrates (qualities)
- Encapsulate tiles into single HEVC bitstream

- Split the videos into tiles of sub-videos
- Encode the tiles using motion-constrained HEVC encoder with different bitrates (qualities)
- Encapsulate tiles into single HEVC bitstream
- Integrate with DASH for spatial index generation (MPD and SRD)

- 360° Video Server
 - HEVC^[1] encoder
 - MPEG DASH^[2] content generator
 - HTTP Server

• 360° Video Server

Client with HMD

- HEVC^[1] encoder
- MPEG DASH^[2] content generator
- HTTP Server

- 360° Video Server
 - HEVC^[1] encoder

- Client with HMD
 - Tile selector
- MPEG DASH^[2] content generator
- HTTP Server

- 360° Video Server
 - HEVC^[1] encoder

- Client with HMD
 - Tile selector
- MPEG DASH^[2] content generator
- HTTP Server

- 360° Video Server
 - HEVC^[1] encoder

- Client with HMD
 - Tile selector
- MPEG DASH^[2] content generator
- HTTP Server

- 360° Video Server
 - HEVC^[1] encoder
 - MPEG DASH^[2] content generator
 - HTTP Server

[1] G. Sullivan et al. "Overview of the high efficiency video coding (HEVC) standard." Sullivan, Gary J., et al. "Overview of the high efficiency video coding (HEVC) standard." *IEEE Transactions on circuits and systems for video technology* 22 (12), 2012, 1649-1668.
[2] ISO/IEC DIS 23009-1.2 Dynamic adaptive streaming over HTTP (DASH)

Client with HMD

Tile selector

HEVC decoder

Testbed

- Server
 - Kvazaar^[1] HEVC encoder
 - MP4Box^[2] DASH content generator
 - Apache HTTP server^[3]
- Client
 - Oculus Rift DK2^[4]
 - MP4Client^[5]
- 4G LTE Network
 - RBS 6601 base station
 - HUAWEI E3267 4G dongle
- [1] Kavazaar, an opensource HEVC encoder. <u>https://github.com/ultravideo/kvazaar</u>
- [2] MP4Box , a multimedia packager. https://gpac.wp.imt.fr/mp4box/
- [3] Apache HTTP server. <u>https://httpd.apache.org/</u>
- [4] Oculus Rift Development Kit 2 (DK2). <u>https://www3.oculus.com/en-us/dk2/</u>
- [5] MP4Client, an opensource multimedia player. https://gpac.wp.imt.fr/player/

Experiment Setup

- Number of tiles: {1x1, 3x3, 5x5, 7x7, 9x9}
- DASH segment length: {1, 4, 10} secs
- Bitrates: {3, 6, 12} Mbps
- Viewer's FoV is randomly chosen from dataset^[1]
- Perform 3 times and report the average

[1] W. Lo, C. Fan, J. Lee, C. Huang, K. Chen, and C. Hsu, "360° video viewing dataset in head-mounted Virtual 33
Reality," in Proc. of ACM MMSys'17

Measurement Design

- How tile size affects the streaming system performance?
- How much bandwidth saving can we get by selectively requesting useful tiles?
- How many users can be supported in one cell?

Measurement Design

- How tile size affects the streaming system performance?
 - vary the number of tiles and the bitrates
- How much bandwidth saving can we get by selectively requesting useful tiles?
- How many users can be supported in one cell?

The Number of Tiles $\uparrow \Rightarrow$ Coding Efficiency \downarrow

• Due to motion constraints among tiles

Number of Tiles 1, Protocol Overhead 1

- The majority of the streamed tiles are videos
- The protocol overhead is always less than 3%

More Tiles Consume More Time to Download

Reasons

- Sequentially download
- Tile encapsulation overhead

Measurement Design

- How tile size affects the streaming system performance?
 - vary the number of tiles and the bitrates
- How much bandwidth saving can we get by selectively requesting useful tiles?
 - modify the client to only request the tiles that will be watched by viewers
- How many users can be supported in one cell?

The Bandwidth Saving of FoV-Based Streaming

 Skipping tiles based on viewer's FoV saves the bandwidth by up to 80%

More Tiles Incurs Minor Video Quality Drop

Reduces the amount of data and incurs minor video quality drop

[1] M. Yu, H. Lakshman, and B. Girod, "A framework to evaluate omnidirectional video coding schemes," in Proc. of IEEE International Symposium on Mixed and Augmented Reality (ISMAR'15)

Measurement Design

- How tile size affects the streaming system performance?
 - vary the number of tiles and the bitrates
- How much bandwidth saving can we get by selectively requesting useful tiles?
 - modify the client to only request the tiles that will be watched by viewers
- How many users can be supported in one cell?
 - repeat the above experiments but with more clients

Scalability

- Our streaming testbed can support at least 3 clients
- More number of tiles -> smaller average bandwidth

Conclusion

- We design measurement experiments to quantify the performance of VR streaming over cellular networks
- We build a streaming testbed and conduct extensive experiments using real user trace^[1]
 - FoV-based video streaming can save up to **80**% in bandwidth consumption
 - More tiles suffer from lower coding efficiency and late segments

[1] W. Lo, C. Fan, J. Lee, C. Huang, K. Chen, and C. Hsu, "360° video viewing dataset in head-mounted Virtual Reality," in Proc. of ACM MMSys'17

Future Work

• This work can be extended to optimal bitrate allocation for mobile AR/VR systems with HMDs

ch.ling.fan@gmail.com