Managing Mobile Sensor Networks in an Underground Pipe

Susumu Ishihara (Shizuoka University, Japan)

Sep. 27, 2017, APNOMS2017, Seoul, Korea

Agenda

- Sewer Inspection Technologies
 - Introduction of Drifting Sensor Network
- Sensor Network Technologies for Underground Facilities / Pipes
- Wireless Communication in Underground Pipes
 - Characteristics of Wireless Communication in Narrow Pipes
 - Our Experimentation in Narrow Sewer Pipes
- Cooperative Protocol for Multiple Drifting Sensor Networks
 - For reliably transferring large size sensor/camera data to access points
 - For saving battery power

Underground Pipes

Sewer

- Sewage / Rain water / Mixed
- Non-Pressured

Water Supply

- Pressured
- Gas
- Trains / Cars
- Cables

Aging Sewer Pipes

- 460,000km Total length of sewer pipes in Japan
- Many pipes are buried in 1970's
 - 10,000km pipes are over 50years old.
 - 10 year later -> 50% sewer pipes will be more than 30 years old.
 - 30 years Practical lifetime of reinforced concrete pipes.

About USD 110 Million/year for maintenance

• Cave-ins 3500/year (2013)

Inside of a collapsed pipe Ginza Takanawa From Web page of Waterworks Bureau, Land, Infrastructure and Transportation Ministry of Japan http://www.mlit.go.jp/crd/city/sewerage/yakuwari/kaitiku_koushin.html

Sewer Inspection

- Needs much money, time, and human power
- Japanese law imposes an obligation of inspection of sewer pipes that reach their lifetime
 - Most of local governments cannot afford it.
- Conventional Sewer Inspection Techniques
 - Robots (with cameras and sonars), Ships ... wired Control
 - Human visual check (Danger!)
 ... especially for large diameter pipes
 - Fiber Scopes

New Technologies

• Effective Screening Techniques are needed

- For roughly checking wide areas in a short time
 - More than 1km/day
 - e.g. Detailed inspection with robot camera 300m/day
- Wired Remote controlled wheeled robot + wideangle extraction camera
- Pipe-edge camera
- Unmanned ship + Action Cameras (e.g. GoPro)
 - Still Needs Much Labor Cost and Time
- Surface elastic wave

Drifting Sensor Network for Sewer Inspection [Ishihara, 2012]

7

Save labor cost for sewer investigation using drifting sensors / cameras.

Sensor Network Technologies for Underground Facilities / Pipes

• PIPENET [Stoianov, IPSN2007]

- Sensor Network for monitoring large diameter water transferring pipes.
- Uses stationary sound sensors and vibration sensors

Underground Sensor Network [Akyildiz, AHN2006][Vuran, PCJ2010]

- For agriculture monitoring
- Wireless communication with sub GHz radio, -100db in 3m, Very strong signal attenuation by soil (especially with higher water content)

• Wireless Sensor Network in Coal Mines [Li, ISPN2007]

- Structure-Aware Self-Adaptive Sensor system (SASA)
- Implementation with 27 MICA2 (868/916 MHz) sensor nodes at 3m-interval

• Drifting Sensor Network for Sewer Inspection [Ishihara, 2012, etc.]

Related Work of Drifting Sensor Network

• SewerSnort [Kim 09] (UCLA, UCI)

- Gas Sensor + IEEE802.15.4
 + Floating Tube
- Estimates the position of the sensor using RSSI from AP

• Floating Sensor Network (UCB)

- Monitors water current, water quality, etc.
- 3G and IEEE802.15.4 (ZigBee) wireless interfaces

Drifting Sensor Network for Sewer Inspection [Ishihara, 2012]

Save labor cost for sewer investigation using drifting sensors / cameras.

Issues for realizing drifting sensor network for sewer inspection

Sensors

- Gas sensors: H₂S, etc. ... Expensive
- Cameras: Cheap and widely used in real sewer inspection
- Sound: Hard to use in drifting

• Retrieving data

- No communication Saving data on the memory card and retrieve it after the inspection
 - Workers cannot check/ monitor the progress of inspection
 - If the inspection range is long and sensing fails, the penalty is severe.
- Wireless communication: Limited Communication Range
- Wired communication: Annoying cables....

Chassis of the sensor/camera node

Joint work with Prof. Hiroaki Sawano (Aichi Institute of Technology, Japan)

- Light, Small, and Water Resistant
- Keeps the camera position
- Dual Capsule
- Battery for lights are placed at the bottom of the chassis
- Strong light: 4 lights
- Prevents reflection of light
- Wide view angle
 Omnidirectional camera
 Kodak SP360

The first prototype Only camera and lights

Candescent light bulb

Compensation of rotation

- By image processing, we compensated the horizontal rotation of the camera.
 - Make a panorama-image of each frame, and binarize it
 - Make a histogram of the number of white-pixels at each X coordinate value
 - Matches the shape of the histogram of neighboring frames, and find the gap

Result of Compensation

Original videoAfter compensation1m/s Horizontal movement, 1deg/Frame rotation

Wireless Communication in Underground Pipes

How long is the maximum communication range of off-the-shelf wireless devices in underground sewer pipes?

How to lengthen the range?

How to compensate the short communication range?

Experiment in a real sewer pipe in the campus

Φ200mm pipe (Largest in the campus) No reachability between the closest manholes (10m)

Devices used for measurement

Android Smartphone IEEE 802.11g 100bytes / 500bytes 1s interval Auto bitrate (5-54Mbps)

XBee Pro + Arduino UNO IEEE 802.15.4 100bytes1s interval Bitrate: 250kbps

Relationship between received power and wireless communication range

 To achieve sufficiently long wireless communication range, we should increase the received signal power.

 $P_r = \frac{G_t G_r P_t}{L} \quad \mbox{(Friis transmission equation)}$

 $P_t, P_r\;$ Transmission and received power $\;L\;$ Path loss $G_t, G_r\;$ Transmitting and receiving antenna gain

• How to increase the received power?

- Increasing the transmission power
- Increasing the transmitting and receiving antenna gain
- Decreasing the path loss

Relationship between path loss and frequency band in free space

The path loss of low frequency radio is smaller than that of high frequency radio.

Relationship between Fresnel zone and frequency band

24

Measurement of wireless communication characteristics using an experimental pipe

The sender transmitted packets to the receiver.

We measured the RSSI and the packet reception ratio.

Device

Data size: 100bytes Frequency: 920MHz (ARIB STD T-108) Number of packet: 180 2.4GHz (IEEE802.15.4,11g) Tx-interval: 1s 5GHz (IEEE802.11a) Tx-power: 10dBm Pipe Thickness of the pipe: 6.5mm Depth of water: 4cm 1m Soil 8m 40cm 20cm Data transmission Plastic string for fixing the device Receiver Sender

Making our own testbed

Experimental pipe after buried

Device's position in an experimental pipe

To investigate the relationship between obstacles in first Fresnel zone and the wireless communication range, we changed the height of the device position.

Receiver

Sender

Experiment Devices

920MHz

Arduino UNO +Toho technology TMJ0914 (ARIB Std T108)

2.4GHz

Fujitsu Arrows Me F-11D Android Smartphone (IEEE802.11g)

2.4GHz

Arduino UNO + Digi international Inc. Xbee Pro (IEEE 802.15.4)

2.4GHz, 5GHz

Raspberry Pi +Planex comm. GW-450D (USB dongle) (IEEE802.11g, a)

31

Data reception ratio (Omnidirectional antenna, Autorate)

Simulation Results

• FDTD Simulation results of radio propagation in a pipe without water surrounded by soil with 5mm x 5mm x 5mm-mesh.

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Improving Data Transmission Speed by using wide bandwidth

Using Channel Bonding Tx. 20MHz Merges two neighboring 20MHz channel to a 40MHz channel -# of subcarriers of OFDM increases -> Higher data rate • Tx. Power/MHz is kept. Guard band Tx. Power/Subcarrier is reduced to 50% (-3dB) Sender **2CH Parallel** Communication Ch Y Uses two comm. interfaces Assigns different channel to each interface

Sends two different streams from the two interfaces

Placement of two antennas in a pipe

Cross-Sectional Direction
 Axial Direction
 Axial Direction

L1&L2 Standard	IEEE 802.11n	
Radio Frequency	20MHz CH × 1	5.18GHz Freq
	40MHz CH × 1	5.18GHz 5.20GHz
	20MHz CH × 2	5.18GHz 5.24GHz
Radio Interface	Planex GW-450D	(MediaTek MT7610U)
Controller	Raspberry Pi Model B	
Tx. Power	10mW/MHz	
Data Rate	MCS7 : 65Mbps(20M (64QAM Mod MCS4 : 39Mbps(20M (16QAM, Cod	Hz), 135Mbps(40MHz) Iula, Coding rate 5/6) Hz), 81Mbps(40MHz) ding rate 3/4)

Experiment Result: Throughput

Channel Bonding

- Better throughput at <= 4m
- Throughput degraded at 6m.
- Reason: Reduced Tx power/Sub channel

20MHz x 2

- (Antenna: Cross-Sectional Placement)
- Throughput severely degraded at 6m
- Blocked Fresnel Zone

Summary

Wireless Communication in Underground Sewer Pipes

- Higher Frequency is better for Narrow Pipes
 - For popular φ200mm PVC pipes 5GHz is better than 2.4GHz and 920MHz
 - Fresnel zone is blocked by soil

Position of antennas in the pipe is important

- Antennas should be placed at the center of the space in the cross section of the pipe.
- Using multiple antennas and multiple channels
 - No positive experiment results so far.
- Directional antenna works well

Cooperative Protocol for Drifting Sensor Networks with Multiple Drifting Nodes

For reliably transferring large size sensor/camera data to access points

For saving battery power

Strategies for transmitting large data in a sewer pipe

• Increasing transmittable data size

- Increasing capacity of the link between a drifting camera node and an AP
 - Channel bonding
 - MIMO
- Expanding communication range between a node and an AP
 - Multi-hop networking
 - High frequency band (e.g. 5GHz, 60GHz)

Decreasing the data size which a drifting camera node transmits to an AP

Issues in collecting data from multiple drifting camera nodes

- How does a node know the video data sent from other node?
 - How does a node detect its position (and where it recorded the video)?
- How do nodes avoid simultaneous transmissions near the same AP?

Avoiding simultaneous transmissions

If a drifting camera node sends data anytime it has connectivity to an AP...

An AP notifies existence of a drifting camera node currently transmitting data by appending the node's ID to beacon packets

• Each drifting camera node transmits data if there is no node ID in a beacon packet it receives

How to Save Battery Power?

Here, we assume we use multiple small size sensor with very small battery and the data observed by them are sent to APs with a limited communication range.

• Turn off the sensor node

- Sensors
- Communication Interface Large Energy Consumption

• When are they turned off?

- If the interface of a node is off when it passes by an AP, it fails to communicate with the AP.
- No data will be forwarded to the AP!
- We need to keep the connectivity between the AP and sensor nodes and save their battery power
- If multiple sensor nodes are used, we can turn off some of those that work at the same place.

Basic Strategy

• Leveraging a clustering algorithm for sensor networks

- A cluster head (or active node), one of nodes in the vicinity, works for sensing and transferring data obtained by the nodes in the vicinity to APs.
- According to the **residual battery power**, a cluster is selected in a distributed manner.

Two well known distributed algorithms for selecting active nodes (CHs)

- 1. Select CHs independently of the current connectivity between nodes according to a given probability.
 - LEACH [Heinzelman, '00]

2. Select CHs so that every nodes can communicate with at least one CH.

Comparison of 3 algorithms

Simulation Model

Model of node mobility on the water flow

Each node moves to its right cell with probability p_m if the cell is empty.

*P*_m=1.0: All nodes move simultaneously: No spread*P*_m < 1.0: Nodes spread widely

Summary

Cooperative Protocol for Drifting Sensor Networks with Multiple Drifting Nodes

For reliably transferring large size sensor/camera data to access points

- Use multiple sensor/camera nodes to observe the same area
- Transfer data from multiple nodes at different timing to APs.
- Send the information of the area that is covered by the transferred sensor/ vide data from APs to sensor/camera nodes.

For saving battery power

- Use multiple sensor nodes, turn on one of nodes in the vicinity based on a distributed clustering algorithm for sensor networks.
- Select a cluster head according to the node density, residual battery power.
- **Improved Heed:** Even if a node is selected as a cluster head, it sometimes sleep when the number of its neighbor is small.

Open issues

Localization

- Time elapsed after detecting an AP
- Number of joints of pipes
- Received signal strength
- Kalman Filter and Rauch-Tung-Striebel (RTS) Smoother

• Using higher frequency

- 60GHz
- Free space optical (FSO) communication

Access point

- Communication between inside and outside of a manhole
- Installation of the chassis and antennas

References

[Nagashima 2016]	T. Nagashima, Y. Tanaka, and S. Ishihara, Measurement of WLAN in sewer pipes for sewer inspection systems using drifting wireless sensor nodes, IEICE Trans. on Communications, Vol.E99-B, No.9, pp.1989-1997, 2016.
[Tanaka 2016]	Y. Tanaka, S. Ishihara, Cooperative video data transmission for sewer inspection using multiple drifting cameras, proc. MobiQuitous 2016 workshop, pp.190-195, 2016.
[Maegawa 2014]	H. Maegawa and S. Ishihara, [Demo] Experimental implementation of drifting wireless sensor networks which have intermittent connectivity to access points for sewer inspection, proc. int'l conference on mobile computing and ubiquitous networking (ICMU2014), pp.87-88, 2014.
[Mitake 2013]	K. Mitake, S. Ishihara, A basic study of data collection ratio of drifting sensor networks for monitoring waterways, proc. 6th Int'I workshop on data management for wireless and pervasive communications (DMWPC), 2013.
[Ishihara 2012]	S. Ishihara and D. Sato, Active node selection in flowing wireless sensor networks, proc. 6th int'l conference on mobile computing and ubiquitous networking (ICMU2012), 2012.
[Stoianov, IPSN2007]	I. Stoianov, L. Nachman, S. Madden, and T. Tokumouline, PIPENET: A Wireless sensor Network for pipeline monitoring, proc. 2007 6th International Symposium on Information Processing in Sensor Networks (IPSN2007), pp.264-273, 2007.
[Akyildiz, AHN2006]	I. F. Akyildiz, E.P. Stuntebeck, Wireless underground sensor networks: Research challenges, Ad Hoc Networks, vol.4, pp.669-686, 2006.
[Vuran, PCJ2010]	M. C. Vuran and I. F. Akyildiz, Channel model and analysis for wireless underground sensor networks in soil medium, Physical Communication Journal, vol.3, no.4, pp.245-254, 2010.
[Li, ISPN2007]	M. Li and Y. Liu, Underground structure monitoring with wireless sensor networks, proc. 2007 6th International Symposium on Information Processing in Sensor Networks (IPSN2007), pp.69-78, 2007.
[Kim 2009]	J. Kim, et al., SewerSnort: A drifting sensor for in-situ sewer gas monitoring, proc. 2009 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 1-9, 2009.